312 lines
13 KiB
C
312 lines
13 KiB
C
/*
|
||
动态ZUPT+卡尔曼
|
||
多了加速度死区、摩擦力速度衰减、高通滤波
|
||
原地摆动产生的速度、距离变化还是没法消除
|
||
水平移动、斜坡移动效果貌似还行
|
||
*/
|
||
#include "skiing_tracker.h"
|
||
#include "../sensor/SC7U22.h"
|
||
#include <math.h>
|
||
#include <string.h>
|
||
|
||
#define G_ACCELERATION 9.81f
|
||
#define DEG_TO_RAD (3.14159265f / 180.0f)
|
||
|
||
// --- 算法阈值定义 ---
|
||
//两个判断是否静止的必要条件
|
||
// 动态零速更新(ZUPT)阈值
|
||
// 提高阈值,让“刹车”更灵敏,以便在波浪式前进等慢速漂移时也能触发零速更新
|
||
#define ZUPT_ACC_VARIANCE_THRESHOLD 0.2f
|
||
// 陀螺仪方差阈值
|
||
#define ZUPT_GYR_VARIANCE_THRESHOLD 5.0f
|
||
|
||
// 旋转/摆动检测阈值:角速度总模长大于此值(度/秒),认为正在进行非滑雪的旋转或摆动 -- 没法完全消除
|
||
#define ROTATION_GYR_MAG_THRESHOLD 45.0f
|
||
// 启动滑雪阈值:加速度模长与重力的差值大于此值,认为开始运动
|
||
// 降低阈值,让“油门”更灵敏,以便能捕捉到真实的慢速启动
|
||
#define START_SKIING_ACC_THRESHOLD 0.5f
|
||
|
||
// --- 用于消除积分漂移的滤波器和阈值 ---
|
||
// 高通滤波器系数 (alpha)。alpha 越接近1,滤除低频(直流偏移)的效果越强,但可能滤掉真实的慢速运动。
|
||
// alpha = RC / (RC + dt),
|
||
#define HPF_ALPHA 0.95f
|
||
// 加速度死区阈值 (m/s^2)。低于此阈值的加速度被认为是噪声,不参与积分。
|
||
// 设得太高会忽略真实的慢速启动,设得太低则无法有效抑制噪声。
|
||
#define ACC_DEAD_ZONE_THRESHOLD 0.1f
|
||
|
||
// --- 模拟摩擦力,进行速度衰减 ---
|
||
#define SPEED_ATTENUATION 0.98f
|
||
|
||
/**
|
||
* @brief 初始化滑雪追踪器
|
||
*/
|
||
void skiing_tracker_init(skiing_tracker_t *tracker)
|
||
{
|
||
if (!tracker) {
|
||
return;
|
||
}
|
||
// 使用memset一次性清零整个结构体,包括新增的缓冲区
|
||
memset(tracker, 0, sizeof(skiing_tracker_t));
|
||
tracker->state = SKIING_STATE_STATIC;
|
||
}
|
||
|
||
/**
|
||
* @brief 将设备坐标系下的加速度转换为世界坐标系
|
||
* @param acc_device 设备坐标系下的加速度 [x, y, z]
|
||
* @param angle 姿态角 [pitch, roll, yaw],单位: 度
|
||
* @param acc_world 输出:世界坐标系下的加速度 [x, y, z]
|
||
*/
|
||
static void transform_acc_to_world_frame(const float *acc_device, const float *angle, float *acc_world)
|
||
{
|
||
// 驱动输出的角度与标准航空定义相反,需要取反才能用于标准旋转矩阵。
|
||
float pitch = -angle[0] * DEG_TO_RAD;
|
||
float roll = -angle[1] * DEG_TO_RAD;
|
||
|
||
// TODO: 当引入三轴磁力计后,这里的 yaw 应由磁力计和陀螺仪融合解算得出,以解决航向漂移问题。
|
||
// 目前 yaw 暂时不参与计算,因为仅靠加速度计和陀螺仪无法获得准确的绝对航向角。
|
||
// float yaw = -angle[2] * DEG_TO_RAD;
|
||
|
||
float cp = cosf(pitch);
|
||
float sp = sinf(pitch);
|
||
float cr = cosf(roll);
|
||
float sr = sinf(roll);
|
||
|
||
float ax = acc_device[0];
|
||
float ay = acc_device[1];
|
||
float az = acc_device[2];
|
||
|
||
// 使用经过验证的、正确的身体坐标系到世界坐标系的旋转矩阵 (基于 Y-X 旋转顺序)
|
||
// 这个矩阵将设备测量的加速度(ax, ay, az)正确地转换到世界坐标系(acc_world)。
|
||
// 注意:这里没有使用yaw,主要关心的是坡面上的运动,绝对航向暂时不影响速度和距离的计算。
|
||
// TODO
|
||
acc_world[0] = cp * ax + sp * sr * ay + sp * cr * az;
|
||
acc_world[1] = 0 * ax + cr * ay - sr * az;
|
||
acc_world[2] = -sp * ax + cp * sr * ay + cp * cr * az;
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief 计算缓冲区内三轴数据的方差之和
|
||
*/
|
||
static float calculate_variance(float buffer[VARIANCE_BUFFER_SIZE][3])
|
||
{
|
||
float mean[3] = {0};
|
||
float variance[3] = {0};
|
||
|
||
// 1. 计算均值
|
||
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
|
||
mean[0] += buffer[i][0];
|
||
mean[1] += buffer[i][1];
|
||
mean[2] += buffer[i][2];
|
||
}
|
||
mean[0] /= VARIANCE_BUFFER_SIZE;
|
||
mean[1] /= VARIANCE_BUFFER_SIZE;
|
||
mean[2] /= VARIANCE_BUFFER_SIZE;
|
||
|
||
// 2. 计算方差
|
||
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
|
||
variance[0] += (buffer[i][0] - mean[0]) * (buffer[i][0] - mean[0]);
|
||
variance[1] += (buffer[i][1] - mean[1]) * (buffer[i][1] - mean[1]);
|
||
variance[2] += (buffer[i][2] - mean[2]) * (buffer[i][2] - mean[2]);
|
||
}
|
||
variance[0] /= VARIANCE_BUFFER_SIZE;
|
||
variance[1] /= VARIANCE_BUFFER_SIZE;
|
||
variance[2] /= VARIANCE_BUFFER_SIZE;
|
||
|
||
// 返回三轴方差之和,作为一个综合的稳定度指标
|
||
return variance[0] + variance[1] + variance[2];
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief 状态机更新
|
||
*/
|
||
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device_ms2, const float *gyr_dps)
|
||
{
|
||
// 缓冲区未填满时,不进行状态判断,默认为静止
|
||
if (!tracker->buffer_filled) {
|
||
tracker->state = SKIING_STATE_STATIC;
|
||
return;
|
||
}
|
||
|
||
// --- 计算关键指标 ---
|
||
float acc_variance = calculate_variance(tracker->acc_buffer); // 计算加速度方差
|
||
float gyr_variance = calculate_variance(tracker->gyr_buffer); // 计算陀螺仪方差
|
||
float gyr_magnitude = sqrtf(gyr_dps[0]*gyr_dps[0] + gyr_dps[1]*gyr_dps[1] + gyr_dps[2]*gyr_dps[2]);
|
||
float acc_magnitude = sqrtf(acc_device_ms2[0]*acc_device_ms2[0] + acc_device_ms2[1]*acc_device_ms2[1] + acc_device_ms2[2]*acc_device_ms2[2]);
|
||
|
||
// --- 状态切换逻辑---
|
||
|
||
// 原地旋转/摆动检测
|
||
// 增加一个关键前提:只在当前不处于滑雪状态时,才检测原地旋转。
|
||
// 这可以防止滑雪过程中的高速转弯被误判为原地旋转。
|
||
// 暂时没办法完全消除
|
||
if (gyr_magnitude > ROTATION_GYR_MAG_THRESHOLD && tracker->state != SKIING_STATE_SKIING) {
|
||
tracker->state = SKIING_STATE_ROTATING;
|
||
return;
|
||
}
|
||
|
||
// 动态零速更新 (ZUPT)
|
||
// 必须同时满足加速度和角速度都稳定,才能判断为“真静止”,以区分匀速运动
|
||
if (acc_variance < ZUPT_ACC_VARIANCE_THRESHOLD && gyr_variance < ZUPT_GYR_VARIANCE_THRESHOLD) {
|
||
tracker->state = SKIING_STATE_STATIC;
|
||
// 速度清零,抑制漂移
|
||
memset(tracker->velocity, 0, sizeof(tracker->velocity));
|
||
tracker->speed = 0.0f;
|
||
//当检测到静止时,必须重置高通滤波器的状态,否则下次启动时会有跳变
|
||
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
|
||
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
|
||
return;
|
||
}
|
||
|
||
// 从静止/旋转状态启动
|
||
if (tracker->state == SKIING_STATE_STATIC || tracker->state == SKIING_STATE_ROTATING) {
|
||
// 最终版启动逻辑:必须同时满足“有足够大的线性加速度”和“旋转不剧烈”两个条件
|
||
// 新增 gyr_magnitude 判断,防止原地旋转产生的离心加速度被误判为启动
|
||
if (fabsf(acc_magnitude - G_ACCELERATION) > START_SKIING_ACC_THRESHOLD &&
|
||
gyr_variance < ZUPT_GYR_VARIANCE_THRESHOLD &&
|
||
gyr_magnitude < ROTATION_GYR_MAG_THRESHOLD) {
|
||
tracker->state = SKIING_STATE_SKIING;
|
||
return;
|
||
}
|
||
}
|
||
// 最后的 fall-through 逻辑已移除,以修复原地旋转被错误判断为滑雪的bug。
|
||
// 如果不满足任何状态切换条件,状态将保持不变,直到ZUPT或启动条件被满足。
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief 主更新函数
|
||
*/
|
||
void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_dps, float *angle, float dt)
|
||
{
|
||
if (!tracker || !acc_g || !gyr_dps || !angle || dt <= 0) {
|
||
return;
|
||
}
|
||
|
||
// --- 数据预处理和缓冲 ---
|
||
float acc_device_ms2[3];
|
||
acc_device_ms2[0] = acc_g[0] * G_ACCELERATION;
|
||
acc_device_ms2[1] = acc_g[1] * G_ACCELERATION;
|
||
acc_device_ms2[2] = acc_g[2] * G_ACCELERATION;
|
||
|
||
// 将最新数据存入缓冲区
|
||
memcpy(tracker->acc_buffer[tracker->buffer_index], acc_device_ms2, sizeof(acc_device_ms2));
|
||
memcpy(tracker->gyr_buffer[tracker->buffer_index], gyr_dps, 3 * sizeof(float));
|
||
|
||
tracker->buffer_index++;
|
||
if (tracker->buffer_index >= VARIANCE_BUFFER_SIZE) {
|
||
tracker->buffer_index = 0;
|
||
tracker->buffer_filled = 1; // 标记缓冲区已满
|
||
}
|
||
|
||
// --- 更新状态机 ---
|
||
update_state_machine(tracker, acc_device_ms2, gyr_dps);
|
||
|
||
// --- 根据状态进行计算 ---
|
||
if (tracker->state == SKIING_STATE_SKIING) {
|
||
// 坐标转换 & 移除重力
|
||
transform_acc_to_world_frame(acc_device_ms2, angle, tracker->acc_world);
|
||
tracker->acc_world[2] -= G_ACCELERATION;
|
||
|
||
// 对世界坐标系下的加速度进行高通滤波,消除直流偏置和重力残差
|
||
for (int i = 0; i < 3; i++) {
|
||
tracker->acc_world_filtered[i] = HPF_ALPHA * (tracker->acc_world_filtered[i] + tracker->acc_world[i] - tracker->acc_world_unfiltered_prev[i]);
|
||
tracker->acc_world_unfiltered_prev[i] = tracker->acc_world[i];
|
||
}
|
||
|
||
// 应用加速度死区,忽略微小抖动和噪声
|
||
float acc_horizontal_mag = sqrtf(tracker->acc_world_filtered[0] * tracker->acc_world_filtered[0] +
|
||
tracker->acc_world_filtered[1] * tracker->acc_world_filtered[1]);
|
||
|
||
if (acc_horizontal_mag > ACC_DEAD_ZONE_THRESHOLD) {
|
||
// 只有当水平加速度足够大时,才进行速度积分
|
||
tracker->velocity[0] += tracker->acc_world_filtered[0] * dt;
|
||
tracker->velocity[1] += tracker->acc_world_filtered[1] * dt;
|
||
// 垂直方向的速度暂时不积分,极易受姿态误差影响而漂移
|
||
// tracker->velocity[2] += tracker->acc_world_filtered[2] * dt;
|
||
}
|
||
// 如果加速度小于阈值,则不更新速度,相当于速度保持不变(或受下一步的阻尼影响而衰减)
|
||
|
||
} else {
|
||
// 在静止或旋转状态下,速度已经在状态机内部被清零
|
||
// 额外增加速度衰减,模拟摩擦力,进一步抑制漂移
|
||
tracker->velocity[0] *= SPEED_ATTENUATION;
|
||
tracker->velocity[1] *= SPEED_ATTENUATION;
|
||
tracker->velocity[2] = 0; // 垂直速度强制归零
|
||
}
|
||
|
||
// --- 更新速率和距离 ---
|
||
// 只基于水平速度计算速率和距离
|
||
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
|
||
tracker->velocity[1] * tracker->velocity[1]);
|
||
tracker->distance += tracker->speed * dt;
|
||
}
|
||
|
||
|
||
// 传感器数据采集与处理任务
|
||
void sensor_processing_task(signed short * acc_data_buf, signed short * gyr_data_buf) {
|
||
static skiing_tracker_t my_skiing_tracker;
|
||
static int initialized = 0;
|
||
static int calibration_done = 0;
|
||
|
||
static signed short combined_raw_data[6];
|
||
static float final_angle_data[3]; // 计算得到的欧若拉角
|
||
static float calibrated_acc_g[3]; // 转换后的加速度计数据
|
||
static float calibrated_gyr_dps[3]; // 转换后的陀螺仪数据
|
||
|
||
const float delta_time = 0.01f;
|
||
|
||
if (!initialized) {
|
||
skiing_tracker_init(&my_skiing_tracker);
|
||
initialized = 1;
|
||
printf("Skiing Tracker Initialized. Waiting for sensor calibration...\n");
|
||
}
|
||
|
||
memcpy(&combined_raw_data[0], acc_data_buf, 3 * sizeof(signed short));
|
||
memcpy(&combined_raw_data[3], gyr_data_buf, 3 * sizeof(signed short));
|
||
|
||
unsigned char status;
|
||
if (!calibration_done) { //第1次启动,开启零漂检测
|
||
status = SL_SC7U22_Angle_Output(1, combined_raw_data, final_angle_data, 0);
|
||
if (status == 1) {
|
||
calibration_done = 1;
|
||
printf("Sensor calibration successful! Skiing mode is active.\n");
|
||
}
|
||
} else {
|
||
status = SL_SC7U22_Angle_Output(0, combined_raw_data, final_angle_data, 0);
|
||
}
|
||
|
||
if (status == 1) {
|
||
// 加速度 LSB to g
|
||
calibrated_acc_g[0] = (float)combined_raw_data[0] / 8192.0f;
|
||
calibrated_acc_g[1] = (float)combined_raw_data[1] / 8192.0f;
|
||
calibrated_acc_g[2] = (float)combined_raw_data[2] / 8192.0f;
|
||
|
||
// 陀螺仪 LSB to dps (度/秒)
|
||
// ±2000dps量程下,转换系数约为 0.061
|
||
calibrated_gyr_dps[0] = (float)combined_raw_data[3] * 0.061f;
|
||
calibrated_gyr_dps[1] = (float)combined_raw_data[4] * 0.061f;
|
||
calibrated_gyr_dps[2] = (float)combined_raw_data[5] * 0.061f;
|
||
|
||
skiing_tracker_update(&my_skiing_tracker, calibrated_acc_g, calibrated_gyr_dps, final_angle_data, delta_time);
|
||
|
||
// 打印逻辑保持不变
|
||
static int count = 0;
|
||
if(count < 10){
|
||
count++;
|
||
return;
|
||
} else {
|
||
count = 0;
|
||
}
|
||
printf("State: %d, Speed: %.2f m/s, Distance: %.2f m\n",
|
||
my_skiing_tracker.state,
|
||
my_skiing_tracker.speed,
|
||
my_skiing_tracker.distance);
|
||
|
||
} else if (status == 0) {
|
||
// printf("Sensor is calibrating...\n");
|
||
} else {
|
||
// printf("Angle calculation error or calibration not finished.\n");
|
||
}
|
||
} |