Files
99_7018_lmx/apps/earphone/xtell_Sensor/calculate/tmp.c
2025-11-06 19:24:51 +08:00

312 lines
13 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
动态ZUPT+卡尔曼
多了加速度死区、摩擦力速度衰减、高通滤波
原地摆动产生的速度、距离变化还是没法消除
水平移动、斜坡移动效果貌似还行
*/
#include "skiing_tracker.h"
#include "../sensor/SC7U22.h"
#include <math.h>
#include <string.h>
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
// --- 算法阈值定义 ---
//两个判断是否静止的必要条件
// 动态零速更新(ZUPT)阈值
// 提高阈值,让“刹车”更灵敏,以便在波浪式前进等慢速漂移时也能触发零速更新
#define ZUPT_ACC_VARIANCE_THRESHOLD 0.2f
// 陀螺仪方差阈值
#define ZUPT_GYR_VARIANCE_THRESHOLD 5.0f
// 旋转/摆动检测阈值:角速度总模长大于此值(度/秒),认为正在进行非滑雪的旋转或摆动 -- 没法完全消除
#define ROTATION_GYR_MAG_THRESHOLD 45.0f
// 启动滑雪阈值:加速度模长与重力的差值大于此值,认为开始运动
// 降低阈值,让“油门”更灵敏,以便能捕捉到真实的慢速启动
#define START_SKIING_ACC_THRESHOLD 0.5f
// --- 用于消除积分漂移的滤波器和阈值 ---
// 高通滤波器系数 (alpha)。alpha 越接近1滤除低频(直流偏移)的效果越强,但可能滤掉真实的慢速运动。
// alpha = RC / (RC + dt)
#define HPF_ALPHA 0.95f
// 加速度死区阈值 (m/s^2)。低于此阈值的加速度被认为是噪声,不参与积分。
// 设得太高会忽略真实的慢速启动,设得太低则无法有效抑制噪声。
#define ACC_DEAD_ZONE_THRESHOLD 0.1f
// --- 模拟摩擦力,进行速度衰减 ---
#define SPEED_ATTENUATION 0.98f
/**
* @brief 初始化滑雪追踪器
*/
void skiing_tracker_init(skiing_tracker_t *tracker)
{
if (!tracker) {
return;
}
// 使用memset一次性清零整个结构体包括新增的缓冲区
memset(tracker, 0, sizeof(skiing_tracker_t));
tracker->state = SKIING_STATE_STATIC;
}
/**
* @brief 将设备坐标系下的加速度转换为世界坐标系
* @param acc_device 设备坐标系下的加速度 [x, y, z]
* @param angle 姿态角 [pitch, roll, yaw],单位: 度
* @param acc_world 输出:世界坐标系下的加速度 [x, y, z]
*/
static void transform_acc_to_world_frame(const float *acc_device, const float *angle, float *acc_world)
{
// 驱动输出的角度与标准航空定义相反,需要取反才能用于标准旋转矩阵。
float pitch = -angle[0] * DEG_TO_RAD;
float roll = -angle[1] * DEG_TO_RAD;
// TODO: 当引入三轴磁力计后,这里的 yaw 应由磁力计和陀螺仪融合解算得出,以解决航向漂移问题。
// 目前 yaw 暂时不参与计算,因为仅靠加速度计和陀螺仪无法获得准确的绝对航向角。
// float yaw = -angle[2] * DEG_TO_RAD;
float cp = cosf(pitch);
float sp = sinf(pitch);
float cr = cosf(roll);
float sr = sinf(roll);
float ax = acc_device[0];
float ay = acc_device[1];
float az = acc_device[2];
// 使用经过验证的、正确的身体坐标系到世界坐标系的旋转矩阵 (基于 Y-X 旋转顺序)
// 这个矩阵将设备测量的加速度(ax, ay, az)正确地转换到世界坐标系(acc_world)。
// 注意这里没有使用yaw主要关心的是坡面上的运动绝对航向暂时不影响速度和距离的计算。
// TODO
acc_world[0] = cp * ax + sp * sr * ay + sp * cr * az;
acc_world[1] = 0 * ax + cr * ay - sr * az;
acc_world[2] = -sp * ax + cp * sr * ay + cp * cr * az;
}
/**
* @brief 计算缓冲区内三轴数据的方差之和
*/
static float calculate_variance(float buffer[VARIANCE_BUFFER_SIZE][3])
{
float mean[3] = {0};
float variance[3] = {0};
// 1. 计算均值
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
mean[0] += buffer[i][0];
mean[1] += buffer[i][1];
mean[2] += buffer[i][2];
}
mean[0] /= VARIANCE_BUFFER_SIZE;
mean[1] /= VARIANCE_BUFFER_SIZE;
mean[2] /= VARIANCE_BUFFER_SIZE;
// 2. 计算方差
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
variance[0] += (buffer[i][0] - mean[0]) * (buffer[i][0] - mean[0]);
variance[1] += (buffer[i][1] - mean[1]) * (buffer[i][1] - mean[1]);
variance[2] += (buffer[i][2] - mean[2]) * (buffer[i][2] - mean[2]);
}
variance[0] /= VARIANCE_BUFFER_SIZE;
variance[1] /= VARIANCE_BUFFER_SIZE;
variance[2] /= VARIANCE_BUFFER_SIZE;
// 返回三轴方差之和,作为一个综合的稳定度指标
return variance[0] + variance[1] + variance[2];
}
/**
* @brief 状态机更新
*/
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device_ms2, const float *gyr_dps)
{
// 缓冲区未填满时,不进行状态判断,默认为静止
if (!tracker->buffer_filled) {
tracker->state = SKIING_STATE_STATIC;
return;
}
// --- 计算关键指标 ---
float acc_variance = calculate_variance(tracker->acc_buffer); // 计算加速度方差
float gyr_variance = calculate_variance(tracker->gyr_buffer); // 计算陀螺仪方差
float gyr_magnitude = sqrtf(gyr_dps[0]*gyr_dps[0] + gyr_dps[1]*gyr_dps[1] + gyr_dps[2]*gyr_dps[2]);
float acc_magnitude = sqrtf(acc_device_ms2[0]*acc_device_ms2[0] + acc_device_ms2[1]*acc_device_ms2[1] + acc_device_ms2[2]*acc_device_ms2[2]);
// --- 状态切换逻辑---
// 原地旋转/摆动检测
// 增加一个关键前提:只在当前不处于滑雪状态时,才检测原地旋转。
// 这可以防止滑雪过程中的高速转弯被误判为原地旋转。
// 暂时没办法完全消除
if (gyr_magnitude > ROTATION_GYR_MAG_THRESHOLD && tracker->state != SKIING_STATE_SKIING) {
tracker->state = SKIING_STATE_ROTATING;
return;
}
// 动态零速更新 (ZUPT)
// 必须同时满足加速度和角速度都稳定,才能判断为“真静止”,以区分匀速运动
if (acc_variance < ZUPT_ACC_VARIANCE_THRESHOLD && gyr_variance < ZUPT_GYR_VARIANCE_THRESHOLD) {
tracker->state = SKIING_STATE_STATIC;
// 速度清零,抑制漂移
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0.0f;
//当检测到静止时,必须重置高通滤波器的状态,否则下次启动时会有跳变
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
return;
}
// 从静止/旋转状态启动
if (tracker->state == SKIING_STATE_STATIC || tracker->state == SKIING_STATE_ROTATING) {
// 最终版启动逻辑:必须同时满足“有足够大的线性加速度”和“旋转不剧烈”两个条件
// 新增 gyr_magnitude 判断,防止原地旋转产生的离心加速度被误判为启动
if (fabsf(acc_magnitude - G_ACCELERATION) > START_SKIING_ACC_THRESHOLD &&
gyr_variance < ZUPT_GYR_VARIANCE_THRESHOLD &&
gyr_magnitude < ROTATION_GYR_MAG_THRESHOLD) {
tracker->state = SKIING_STATE_SKIING;
return;
}
}
// 最后的 fall-through 逻辑已移除以修复原地旋转被错误判断为滑雪的bug。
// 如果不满足任何状态切换条件状态将保持不变直到ZUPT或启动条件被满足。
}
/**
* @brief 主更新函数
*/
void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_dps, float *angle, float dt)
{
if (!tracker || !acc_g || !gyr_dps || !angle || dt <= 0) {
return;
}
// --- 数据预处理和缓冲 ---
float acc_device_ms2[3];
acc_device_ms2[0] = acc_g[0] * G_ACCELERATION;
acc_device_ms2[1] = acc_g[1] * G_ACCELERATION;
acc_device_ms2[2] = acc_g[2] * G_ACCELERATION;
// 将最新数据存入缓冲区
memcpy(tracker->acc_buffer[tracker->buffer_index], acc_device_ms2, sizeof(acc_device_ms2));
memcpy(tracker->gyr_buffer[tracker->buffer_index], gyr_dps, 3 * sizeof(float));
tracker->buffer_index++;
if (tracker->buffer_index >= VARIANCE_BUFFER_SIZE) {
tracker->buffer_index = 0;
tracker->buffer_filled = 1; // 标记缓冲区已满
}
// --- 更新状态机 ---
update_state_machine(tracker, acc_device_ms2, gyr_dps);
// --- 根据状态进行计算 ---
if (tracker->state == SKIING_STATE_SKIING) {
// 坐标转换 & 移除重力
transform_acc_to_world_frame(acc_device_ms2, angle, tracker->acc_world);
tracker->acc_world[2] -= G_ACCELERATION;
// 对世界坐标系下的加速度进行高通滤波,消除直流偏置和重力残差
for (int i = 0; i < 3; i++) {
tracker->acc_world_filtered[i] = HPF_ALPHA * (tracker->acc_world_filtered[i] + tracker->acc_world[i] - tracker->acc_world_unfiltered_prev[i]);
tracker->acc_world_unfiltered_prev[i] = tracker->acc_world[i];
}
// 应用加速度死区,忽略微小抖动和噪声
float acc_horizontal_mag = sqrtf(tracker->acc_world_filtered[0] * tracker->acc_world_filtered[0] +
tracker->acc_world_filtered[1] * tracker->acc_world_filtered[1]);
if (acc_horizontal_mag > ACC_DEAD_ZONE_THRESHOLD) {
// 只有当水平加速度足够大时,才进行速度积分
tracker->velocity[0] += tracker->acc_world_filtered[0] * dt;
tracker->velocity[1] += tracker->acc_world_filtered[1] * dt;
// 垂直方向的速度暂时不积分,极易受姿态误差影响而漂移
// tracker->velocity[2] += tracker->acc_world_filtered[2] * dt;
}
// 如果加速度小于阈值,则不更新速度,相当于速度保持不变(或受下一步的阻尼影响而衰减)
} else {
// 在静止或旋转状态下,速度已经在状态机内部被清零
// 额外增加速度衰减,模拟摩擦力,进一步抑制漂移
tracker->velocity[0] *= SPEED_ATTENUATION;
tracker->velocity[1] *= SPEED_ATTENUATION;
tracker->velocity[2] = 0; // 垂直速度强制归零
}
// --- 更新速率和距离 ---
// 只基于水平速度计算速率和距离
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
tracker->velocity[1] * tracker->velocity[1]);
tracker->distance += tracker->speed * dt;
}
// 传感器数据采集与处理任务
void sensor_processing_task(signed short * acc_data_buf, signed short * gyr_data_buf) {
static skiing_tracker_t my_skiing_tracker;
static int initialized = 0;
static int calibration_done = 0;
static signed short combined_raw_data[6];
static float final_angle_data[3]; // 计算得到的欧若拉角
static float calibrated_acc_g[3]; // 转换后的加速度计数据
static float calibrated_gyr_dps[3]; // 转换后的陀螺仪数据
const float delta_time = 0.01f;
if (!initialized) {
skiing_tracker_init(&my_skiing_tracker);
initialized = 1;
printf("Skiing Tracker Initialized. Waiting for sensor calibration...\n");
}
memcpy(&combined_raw_data[0], acc_data_buf, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], gyr_data_buf, 3 * sizeof(signed short));
unsigned char status;
if (!calibration_done) { //第1次启动开启零漂检测
status = SL_SC7U22_Angle_Output(1, combined_raw_data, final_angle_data, 0);
if (status == 1) {
calibration_done = 1;
printf("Sensor calibration successful! Skiing mode is active.\n");
}
} else {
status = SL_SC7U22_Angle_Output(0, combined_raw_data, final_angle_data, 0);
}
if (status == 1) {
// 加速度 LSB to g
calibrated_acc_g[0] = (float)combined_raw_data[0] / 8192.0f;
calibrated_acc_g[1] = (float)combined_raw_data[1] / 8192.0f;
calibrated_acc_g[2] = (float)combined_raw_data[2] / 8192.0f;
// 陀螺仪 LSB to dps (度/秒)
// ±2000dps量程下转换系数约为 0.061
calibrated_gyr_dps[0] = (float)combined_raw_data[3] * 0.061f;
calibrated_gyr_dps[1] = (float)combined_raw_data[4] * 0.061f;
calibrated_gyr_dps[2] = (float)combined_raw_data[5] * 0.061f;
skiing_tracker_update(&my_skiing_tracker, calibrated_acc_g, calibrated_gyr_dps, final_angle_data, delta_time);
// 打印逻辑保持不变
static int count = 0;
if(count < 10){
count++;
return;
} else {
count = 0;
}
printf("State: %d, Speed: %.2f m/s, Distance: %.2f m\n",
my_skiing_tracker.state,
my_skiing_tracker.speed,
my_skiing_tracker.distance);
} else if (status == 0) {
// printf("Sensor is calibrating...\n");
} else {
// printf("Angle calculation error or calibration not finished.\n");
}
}