14 Commits

Author SHA1 Message Date
lmx
2462df5f3e git 2025-11-27 18:28:25 +08:00
lmx
0efd46ea93 ota双备份升级成功 2025-11-27 18:24:36 +08:00
lmx
32de74f01d git 2025-11-27 18:10:01 +08:00
lmx
f8c8b1ec8a feat: Add rfid feature and .gitignore file 2025-11-27 13:28:00 +08:00
lmx
4af4f13ac6 存档 2025-11-25 18:52:49 +08:00
lmx
4c5da2298f 数据按照小端模式发送 2025-11-25 18:01:17 +08:00
lmx
5c7d9ab822 cun 2025-11-25 15:27:26 +08:00
lmx
60a4e95386 cun 2025-11-25 14:27:19 +08:00
lmx
845cc33fe8 gitignore 2025-11-25 14:16:22 +08:00
lmx
f3710fbb4b 蓝牙协议完成 2025-11-21 18:50:19 +08:00
lmx
91b08dbe47 差气压计的蓝牙协议 2025-11-21 17:10:36 +08:00
lmx
591e7632d2 cun 2025-11-21 15:17:10 +08:00
lmx
baa5979ee1 暂存:数据发送协议完善中 2025-11-21 14:54:21 +08:00
lmx
bdadd5de1e cun 2025-11-21 10:53:47 +08:00
1184 changed files with 1068 additions and 298947 deletions

32
.gitignore vendored Normal file
View File

@ -0,0 +1,32 @@
# 编译生成的目标文件
*.o
*.so
*.d
# 编译生成的最终产物
*.elf
*.bin
*.fw
*.ufw
*.map
*.lst
*.bc
# 编译产物目录
# 看起来你所有的编译结果都在 objs/ 目录下,直接忽略整个目录更方便
/objs/
# 工具链和构建产物
# 根据你的路径,这些文件也应该被忽略
/cpu/br28/tools/app.bin
/cpu/br28/tools/data_code.bin
/cpu/br28/tools/download/
/cpu/br28/tools/isd_config.ini
/cpu/br28/tools/sdk.elf*
/cpu/br28/tools/sdk.lst
/cpu/br28/tools/sdk.map
/cpu/br28/sdk_used_list.used
# VSCode 用户个人设置
# 团队协作时,每个人的配置可能不同,通常不建议提交
.vscode/settings.json

33
.vscode/settings.json vendored
View File

@ -1,33 +0,0 @@
{
"files.associations": {
"board_config.h": "c",
"board_jl701n_demo_cfg.h": "c",
"colorful_lights.h": "c",
"board_jl701n_anc_cfg.h": "c",
"update_loader_download.h": "c",
"iic_soft.h": "c",
"circle_buffer.h": "c",
"default_event_handler.h": "c",
"ui_manage.h": "c",
"charge.h": "c",
"app_main.h": "c",
"app_config.h": "c",
"app_action.h": "c",
"includes.h": "c",
"key_event_deal.h": "c",
"app_umidigi_chargestore.h": "c",
"hci_lmp.h": "c",
"bluetooth.h": "c",
"SCU722.C": "cpp",
"math.h": "c",
"avctp_user.h": "c",
"string.h": "c",
"dev_manager.h": "c",
"bt_tws.h": "c",
"skiing_tracker.h": "c",
"xtell.h": "c",
"debug.h": "c",
"ano_protocol.h": "c",
"board_jl701n_demo_global_build_cfg.h": "c"
}
}

View File

@ -213,7 +213,7 @@ void write_gsensor_data_handle(void)
}
// 临时的设备扫描诊断函数
void i2c_scanner_probe(void)
void i2c_scanner_probe(u8* device_addr, u8* found_number)
{
printf("Starting I2C bus scan...\n");
int devices_found = 0;
@ -230,6 +230,7 @@ void i2c_scanner_probe(void)
// iic_tx_byte 返回 1 表示收到了 ACK
if (iic_tx_byte(gSensor_info->iic_hdl, write_addr_8bit))
{
device_addr[devices_found] = addr_7bit;
printf("=====================================================================\n");
printf("I2C device found at 7-bit address: 0x%02X\n", addr_7bit);
printf("I2C device found at 8-bit address: 0x%02X\n", write_addr_8bit);
@ -240,6 +241,7 @@ void i2c_scanner_probe(void)
iic_stop(gSensor_info->iic_hdl);
delay(gSensor_info->iic_delay); // 短暂延时
}
*found_number = devices_found;
if (devices_found == 0) {
printf("Scan finished. No I2C devices found.\n");

View File

@ -530,6 +530,7 @@ void JL_rcsp_msg_deal(void *hdl, u8 event, u8 *msg)
case MSG_JL_ENTER_UPDATE_MODE:
rcsp_printf("MSG_JL_ENTER_UPDATE_MODE:%x %x\n", msg[0], msg[1]);
clk_set("sys",96*1000000L);
bt_set_low_latency_mode(0);
if (support_dual_bank_update_en && !tws_api_get_role()) {
u8 status = 0;

View File

@ -81,10 +81,10 @@ const struct task_info task_info_table[] = {
#if AUDIO_ENC_MPT_SELF_ENABLE
{"enc_mpt_self", 3, 0, 512, 128 },
#endif/*AUDIO_ENC_MPT_SELF_ENABLE*/
// {"update", 1, 0, 256, 0 },
// {"tws_ota", 2, 0, 256, 0 },
// {"tws_ota_msg", 2, 0, 256, 128 },
// {"dw_update", 2, 0, 256, 128 },
{"update", 1, 0, 256, 0 },
{"tws_ota", 2, 0, 256, 0 },
{"tws_ota_msg", 2, 0, 256, 128 },
{"dw_update", 2, 0, 256, 128 },
{"rcsp_task", 2, 0, 640, 128 },
// {"aud_capture", 4, 0, 512, 256 },
// {"data_export", 5, 0, 512, 256 },

View File

@ -87,7 +87,7 @@
//*********************************************************************************//
// USB 配置 //
//*********************************************************************************//
#define TCFG_PC_ENABLE 1//DISABLE_THIS_MOUDLE//PC模块使能
#define TCFG_PC_ENABLE 0//DISABLE_THIS_MOUDLE//PC模块使能
#define TCFG_UDISK_ENABLE 0//ENABLE_THIS_MOUDLE//U盘模块使能
#define TCFG_OTG_USB_DEV_EN BIT(0)//USB0 = BIT(0) USB1 = BIT(1)
@ -729,7 +729,7 @@ DAC硬件上的连接方式,可选的配置:
// 充电舱/蓝牙测试盒/ANC测试三者为同级关系,开启任一功能都会初始化PP0通信接口 //
//*********************************************************************************//
#define TCFG_CHARGESTORE_ENABLE DISABLE_THIS_MOUDLE //是否支持智能充电舱
#define TCFG_TEST_BOX_ENABLE ENABLE_THIS_MOUDLE //是否支持蓝牙测试盒 //xtell
#define TCFG_TEST_BOX_ENABLE DISABLE_THIS_MOUDLE//ENABLE_THIS_MOUDLE //是否支持蓝牙测试盒 //xtell
#define TCFG_ANC_BOX_ENABLE CONFIG_ANC_ENABLE //是否支持ANC测试盒
#define TCFG_UMIDIGI_BOX_ENABLE DISABLE_THIS_MOUDLE //是否支持UMIDIGI充电舱 //xtell
#if TCFG_UMIDIGI_BOX_ENABLE
@ -807,7 +807,7 @@ DAC硬件上的连接方式,可选的配置:
// EQ配置 //
//*********************************************************************************//
//EQ配置使用在线EQ时EQ文件和EQ模式无效。有EQ文件时使能TCFG_USE_EQ_FILE,默认不用EQ模式切换功能
#define TCFG_EQ_ENABLE 1 //支持EQ功能,EQ总使能
#define TCFG_EQ_ENABLE 0 //支持EQ功能,EQ总使能
// #if TCFG_EQ_ENABLE
#define TCFG_EQ_ONLINE_ENABLE 0 //支持在线EQ调试,如果使用蓝牙串口调试,需要打开宏 APP_ONLINE_DEBUG否则默认使用uart调试(二选一)
#define TCFG_BT_MUSIC_EQ_ENABLE 1 //支持蓝牙音乐EQ
@ -1010,7 +1010,7 @@ DAC硬件上的连接方式,可选的配置:
//*********************************************************************************//
#define TCFG_USER_TWS_ENABLE 0 //tws功能使能
#define TCFG_USER_BLE_ENABLE 1 //BLE功能使能
#define TCFG_BT_SUPPORT_AAC 1 //AAC格式支持
#define TCFG_BT_SUPPORT_AAC 0 //AAC格式支持
#define TCFG_BT_SUPPORT_LDAC 0 //LDAC格式支持
#if TCFG_BT_SUPPORT_LDAC
@ -1084,7 +1084,7 @@ DAC硬件上的连接方式,可选的配置:
// 编解码格式配置(CodecFormat) //
//*********************************************************************************//
/*解码格式使能*/
#define TCFG_DEC_MP3_ENABLE ENABLE
#define TCFG_DEC_MP3_ENABLE DISABLE
#define TCFG_DEC_WTGV2_ENABLE ENABLE
#define TCFG_DEC_G729_ENABLE DISABLE
#define TCFG_DEC_WMA_ENABLE DISABLE

View File

@ -8,8 +8,8 @@
/* Following Macros Affect Periods Of Both Code Compiling And Post-build */
#define CONFIG_DOUBLE_BANK_ENABLE 0 //单双备份选择(若打开了改宏,FLASH结构变为双备份结构适用于接入第三方协议的OTA PS: JL-OTA同样支持双备份升级, 需要根据实际FLASH大小同时配置CONFIG_FLASH_SIZE)
#define CONFIG_APP_OTA_ENABLE 0 //是否支持RCSP升级(JL-OTA)
#define CONFIG_DOUBLE_BANK_ENABLE 1 //单双备份选择(若打开了改宏,FLASH结构变为双备份结构适用于接入第三方协议的OTA PS: JL-OTA同样支持双备份升级, 需要根据实际FLASH大小同时配置CONFIG_FLASH_SIZE)
#define CONFIG_APP_OTA_ENABLE 1 //是否支持RCSP升级(JL-OTA)
#define CONFIG_UPDATE_JUMP_TO_MASK 0 //配置升级到loader的方式0为直接reset,1为跳转(适用于芯片电源由IO口KEEP住的方案,需要注意检查跳转前是否将使用DMA的硬件模块全部关闭)
@ -33,7 +33,7 @@
/* Following Macros Only For Post Bulid Configuaration */
#define CONFIG_DB_UPDATE_DATA_GENERATE_EN 0 //是否生成db_data.bin(用于第三方协议接入使用)
#define CONFIG_ONLY_GRENERATE_ALIGN_4K_CODE 0 //ufw只生成1份4K对齐的代码
#define CONFIG_ONLY_GRENERATE_ALIGN_4K_CODE 1 //ufw只生成1份4K对齐的代码
//config for supported chip version
#ifdef CONFIG_BR30_C_VERSION

View File

@ -65,8 +65,8 @@
#if CONFIG_APP_OTA_ENABLE
#define RCSP_UPDATE_EN 1 //是否支持rcsp升级
#if CONFIG_DOUBLE_BANK_ENABLE //双备份才能打开同步升级流程
#define OTA_TWS_SAME_TIME_ENABLE 1 //是否支持TWS同步升级
#define OTA_TWS_SAME_TIME_NEW 1 //使用新的tws ota流程
#define OTA_TWS_SAME_TIME_ENABLE 0 //是否支持TWS同步升级
#define OTA_TWS_SAME_TIME_NEW 0 //使用新的tws ota流程
#else
#define OTA_TWS_SAME_TIME_ENABLE 1//0 xtellota //是否支持TWS同步升级
#define OTA_TWS_SAME_TIME_NEW 1//0 //使用新的tws ota流程

View File

@ -1,10 +1,12 @@
/*
使用四元数求角度和去掉重力分量
*/
#include "skiing_tracker.h"
#include "../sensor/SC7U22.h"
#include <math.h>
#include <string.h>
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
#define ENABLE_XLOG 1
#ifdef xlog
@ -16,13 +18,83 @@
#define xlog(format, ...) ((void)0)
#endif
// --- 静止检测 ---
//两个判断是否静止的必要条件:动态零速更新(ZUPT)阈值
// 加速方差阈值,提高阈值,让“刹车”更灵敏,以便在波浪式前进等慢速漂移时也能触发零速更新
#define STOP_ACC_VARIANCE_THRESHOLD 0.2f
// 陀螺仪方差阈值
#define STOP_GYR_VARIANCE_THRESHOLD 5.0f
// 静止时候的陀螺仪模长
#define STOP_GYR_MAG_THRESHOLD 15
// --- --- ---
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
// --- 启动滑雪阈值 ---
// 加速度模长与重力的差值大于此值,认为开始运动;降低阈值,让“油门”更灵敏,以便能捕捉到真实的慢速启动
#define START_ACC_MAG_THRESHOLD 1.0f //0.5、1
// 陀螺仪方差阈值,以允许启动瞬间的正常抖动,但仍能过滤掉混乱的、非滑雪的晃动。
#define START_GYR_VARIANCE_THRESHOLD 15.0f
// --- --- ---
// --- 滑雪过程 ---
//加速度 模长(不含重力),低于此值视为 在做匀速运动
#define SKIING_ACC_MAG_THRESHOLD 0.5f
//陀螺仪 模长,高于此值视为 摔倒了
#define FALLEN_GRY_MAG_THRESHOLD 2000.0f //未确定
// --- --- ---
// --- 原地旋转抖动 ---
// 加速度 方差 阈值。此值比 静止检测 阈值更宽松,
#define WOBBLE_ACC_VARIANCE_THRESHOLD 0.5f
// 加速度 模长 阈值
#define WOBBLE_ACC_MAG_THRESHOLD 1.0f
// 角速度 总模长 大于此值(度/秒),认为正在进行非滑雪的旋转或摆动
#define ROTATION_GYR_MAG_THRESHOLD 30.0f
// --- --- ---
// --- 滑雪转弯动 ---
// 加速度 方差 阈值,大于此值,滑雪过程可能发生了急转弯
#define WHEEL_ACC_VARIANCE_THRESHOLD 7.0f
// 角速度 总模长 大于此值(度/秒),认为滑雪过程中进行急转弯
#define WHEEL_GYR_MAG_THRESHOLD 500.0f //
// --- --- ---
// --- 跳跃 ---
// 加速度模长低于此值(g),认为进入失重状态(IN_AIR)
#define AIRBORNE_ACC_MAG_LOW_THRESHOLD 0.4f
// 加速度模长高于此值(g),认为发生落地冲击(LANDING)
#define LANDING_ACC_MAG_HIGH_THRESHOLD 3.5f
// 起跳加速度阈值(g)用于进入TAKING_OFF状态
#define TAKEOFF_ACC_MAG_HIGH_THRESHOLD 1.8f
// 进入空中状态确认计数需要连续3个采样点加速度低于阈值才判断为起跳
#define AIRBORNE_CONFIRM_COUNT 3
// 落地状态确认计数加速度恢复到1g附近并持续2个采样点(20ms)则认为已落地
#define GROUNDED_CONFIRM_COUNT 2
// 最大滞空时间(秒),超过此时间强制认为已落地,防止状态锁死
#define MAX_TIME_IN_AIR 12.5f
// --- --- ---
// --- 用于消除积分漂移的滤波器和阈值 ---
// 高通滤波器系数 (alpha)。alpha 越接近1滤除低频(直流偏移)的效果越强,但可能滤掉真实的慢速运动。
// alpha = RC / (RC + dt)参考RC电路而来fc ≈ (1 - alpha) / (2 * π * dt)
#define HPF_ALPHA 0.999f
//0.995f 0.08 Hz 的信号
//0.999f 0.0159 Hz
// --- --- ---
// --- 低通滤波器 ---
// 低通滤波器系数 (alpha)。alpha 越小,滤波效果越强(更平滑),但延迟越大。
// alpha 推荐范围 0.7 ~ 0.95。可以从 0.85 开始尝试。
#define LPF_ALPHA 0.7f
// 加速度死区阈值 (m/s^2)。低于此阈值的加速度被认为是噪声,不参与积分。
// 设得太高会忽略真实的慢速启动,设得太低则无法有效抑制噪声。
//参考0.2f ~ 0.4f
#define ACC_DEAD_ZONE_THRESHOLD 0.05f
// --- 模拟摩擦力,进行速度衰减 ---
#define SPEED_ATTENUATION 1.0f //暂不模拟
BLE_KS_send_data_t KS_data;
static float quaternion_data[4];
#ifdef XTELL_TEST
debug_t debug1;
@ -53,7 +125,7 @@ void stop_detection(void){
}
/**
* @brief 初始化
* @brief 初始化滑雪追踪器
*
* @param tracker
*/
@ -67,6 +139,18 @@ void skiing_tracker_init(skiing_tracker_t *tracker)
tracker->state = STATIC;
}
/**
* @brief 当检测到落地时,计算空中的水平飞行距离并累加到总距离
*/
static void calculate_air_distance(skiing_tracker_t *tracker) {
float horizontal_speed_on_takeoff = sqrtf(
tracker->initial_velocity_on_takeoff[0] * tracker->initial_velocity_on_takeoff[0] +
tracker->initial_velocity_on_takeoff[1] * tracker->initial_velocity_on_takeoff[1]
);
float distance_in_air = horizontal_speed_on_takeoff * tracker->time_in_air;
tracker->distance += distance_in_air;
}
/**
@ -93,7 +177,7 @@ void q_remove_gravity_with_quaternion(const float *acc_device, const float *q, f
}
/**
* @brief 使用四元数将设备坐标系的线性加速度转换到世界坐标系,并且移除重力分量
* @brief 使用四元数将设备坐标系的线性加速度转换到世界坐标系
* @details 同样,此方法比使用欧拉角更优。
* @param acc_linear_device 输入:设备坐标系下的线性加速度 [x, y, z]
* @param q 输入:表示姿态的四元数 [w, x, y, z]
@ -117,6 +201,208 @@ void q_transform_to_world_with_quaternion(const float *acc_linear_device, const
}
/**
* @brief 计算缓冲区内三轴数据的方差之和
*
* @param buffer 传进来的三轴数据:陀螺仪/加速度
* @return float 返回方差和
*/
static float calculate_variance(float buffer[VARIANCE_BUFFER_SIZE][3])
{
float mean[3] = {0};
float variance[3] = {0};
// 计算均值
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
mean[0] += buffer[i][0];
mean[1] += buffer[i][1];
mean[2] += buffer[i][2];
}
mean[0] /= VARIANCE_BUFFER_SIZE;
mean[1] /= VARIANCE_BUFFER_SIZE;
mean[2] /= VARIANCE_BUFFER_SIZE;
// 计算方差
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
variance[0] += (buffer[i][0] - mean[0]) * (buffer[i][0] - mean[0]);
variance[1] += (buffer[i][1] - mean[1]) * (buffer[i][1] - mean[1]);
variance[2] += (buffer[i][2] - mean[2]) * (buffer[i][2] - mean[2]);
}
variance[0] /= VARIANCE_BUFFER_SIZE;
variance[1] /= VARIANCE_BUFFER_SIZE;
variance[2] /= VARIANCE_BUFFER_SIZE;
// 返回三轴方差之和,作为一个综合的稳定度指标
return variance[0] + variance[1] + variance[2];
}
/**
* @brief 摩擦力模拟,进行速度衰减
*
* @param tracker
*/
void forece_of_friction(skiing_tracker_t *tracker){
// 增加速度衰减,模拟摩擦力
tracker->velocity[0] *= SPEED_ATTENUATION;
tracker->velocity[1] *= SPEED_ATTENUATION;
tracker->velocity[2] = 0; // 垂直速度强制归零
}
/**
* @brief 状态机更新
*
* @param tracker 传入同步修改后传出
* @param acc_device_ms2 三轴加速度m/s^2
* @param gyr_dps 三轴陀螺仪dps
*/
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device_ms2, const float *gyr_dps)
{
// 缓冲区未填满时,不进行状态判断,默认为静止
if (!tracker->buffer_filled) {
tracker->state = STATIC;
return;
}
// --- 计算关键指标 ---
float acc_variance = calculate_variance(tracker->acc_buffer); // 计算加速度方差
float gyr_variance = calculate_variance(tracker->gyr_buffer); // 计算陀螺仪方差
float gyr_magnitude = sqrtf(gyr_dps[0]*gyr_dps[0] + gyr_dps[1]*gyr_dps[1] + gyr_dps[2]*gyr_dps[2]); //dps
float acc_magnitude = sqrtf(acc_device_ms2[0]*acc_device_ms2[0] + acc_device_ms2[1]*acc_device_ms2[1] + acc_device_ms2[2]*acc_device_ms2[2]); //m/s^s
float acc_magnitude_g = acc_magnitude / G_ACCELERATION; // 转换为g单位用于跳跃判断
#ifdef XTELL_TEST
debug1.acc_variance =acc_variance;
debug1.gyr_variance =gyr_variance;
debug1.gyr_magnitude=gyr_magnitude;
debug1.acc_magnitude=fabsf(acc_magnitude - G_ACCELERATION);
#endif
// --- 状态机逻辑 (核心修改区域) ---
#if 0 //暂时不考虑空中
// 1. 空中/落地状态的后续处理
if (tracker->state == IN_AIR) {
// A. 检测巨大冲击 -> 落地
if (acc_magnitude_g > LANDING_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = LANDING;
// B. 检测超时 -> 强制落地 (安全机制)
} else if (tracker->time_in_air > MAX_TIME_IN_AIR) {
tracker->state = LANDING;
// C. 检测恢复正常重力 (平缓落地)
} else if (acc_magnitude_g > 0.8f && acc_magnitude_g < 1.5f) {
tracker->grounded_entry_counter++;
if (tracker->grounded_entry_counter >= GROUNDED_CONFIRM_COUNT) {
tracker->state = LANDING;
}
} else {
tracker->grounded_entry_counter = 0;
}
return; // 在空中或刚切换到落地,结束本次状态判断
}
// 2. 严格的 "起跳->空中" 状态转换逻辑
// 只有当处于滑行状态时,才去检测起跳意图
if (tracker->state == NO_CONSTANT_SPEED || tracker->state == CONSTANT_SPEED || tracker->state == WHEEL) {
if (acc_magnitude_g > TAKEOFF_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = TAKING_OFF;
tracker->airborne_entry_counter = 0; // 准备检测失重
return;
}
}
// 只有在TAKING_OFF状态下才去检测是否进入失重
if (tracker->state == TAKING_OFF) {
if (acc_magnitude_g < AIRBORNE_ACC_MAG_LOW_THRESHOLD) {
tracker->airborne_entry_counter++;
if (tracker->airborne_entry_counter >= AIRBORNE_CONFIRM_COUNT) {
memcpy(tracker->initial_velocity_on_takeoff, tracker->velocity, sizeof(tracker->velocity));
tracker->time_in_air = 0;
tracker->state = IN_AIR;
tracker->airborne_entry_counter = 0;
tracker->grounded_entry_counter = 0;
return;
}
} else {
// 如果在起跳冲击后一段时间内没有失重,说明只是一个颠簸,恢复滑行
// 可以加一个小的超时计数器,这里为了简单先直接恢复
tracker->state = NO_CONSTANT_SPEED;
}
return; // 无论是否切换,都结束本次判断
}
#endif
// --- 静止判断 ---
if (acc_variance < STOP_ACC_VARIANCE_THRESHOLD && gyr_variance < STOP_GYR_VARIANCE_THRESHOLD && gyr_magnitude < STOP_GYR_MAG_THRESHOLD) {
tracker->state = STATIC;
return;
}
// --- 地面状态切换逻辑 ---
switch (tracker->state) {
case LANDING:
tracker->state = STATIC;
break;
case STATIC:
// 优先判断是否进入 WOBBLE 状态
// 条件:陀螺仪活动剧烈,但整体加速度变化不大(说明是原地转或晃)
if (gyr_magnitude > ROTATION_GYR_MAG_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) < WOBBLE_ACC_MAG_THRESHOLD) {
tracker->state = WOBBLE;
}
// 只有在陀螺仪和加速度都满足“前进”特征时,才启动
else if (gyr_variance > START_GYR_VARIANCE_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
break;
case WOBBLE:
// 从 WOBBLE 状态启动的条件应该和从 STATIC 启动一样严格
if (gyr_variance < START_GYR_VARIANCE_THRESHOLD * 2 && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
// 如果陀螺仪活动减弱,则可能恢复静止
else if (gyr_magnitude < ROTATION_GYR_MAG_THRESHOLD * 0.8f) { // 增加迟滞,避免抖动
// 不直接跳回STATIC而是依赖下一轮的全局静止判断
}
break;
case NO_CONSTANT_SPEED: //非匀速状态
//暂时不考虑摔倒
// if (gyr_magnitude > FALLEN_GRY_MAG_THRESHOLD) {
// tracker->state = FALLEN; //摔倒
// } else
if (gyr_magnitude > WHEEL_GYR_MAG_THRESHOLD && acc_variance > WHEEL_ACC_VARIANCE_THRESHOLD) {
tracker->state = WHEEL; //转弯
} else if (fabsf(acc_magnitude - G_ACCELERATION) < SKIING_ACC_MAG_THRESHOLD) {
tracker->state = CONSTANT_SPEED; //匀速
}
break;
case CONSTANT_SPEED: //匀速状态
if (fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
//TODO可以添加进入转弯或摔倒的判断
break;
case WHEEL:
// 从转弯状态,检查转弯是否结束
// 如果角速度和加速度方差都降下来了,就回到普通滑行状态
if (gyr_magnitude < WHEEL_GYR_MAG_THRESHOLD * 0.8f && acc_variance < WHEEL_ACC_VARIANCE_THRESHOLD * 0.8f) { // 乘以一个滞后系数避免抖动
tracker->state = NO_CONSTANT_SPEED;
}
break;
case FALLEN:
// TODO回到 STATIC
break;
}
}
/**
* @brief 主更新函数
*
@ -140,46 +426,140 @@ void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_d
acc_device_ms2[1] = acc_g[1] * G_ACCELERATION;
acc_device_ms2[2] = acc_g[2] * G_ACCELERATION;
#if 1 //测试禁止状态下陀螺仪的三轴加速度,去掉重力分量后是否正常
float tmp_device_acc[3];
// 将最新数据存入缓冲区
memcpy(tracker->acc_buffer[tracker->buffer_index], acc_device_ms2, sizeof(acc_device_ms2));
memcpy(tracker->gyr_buffer[tracker->buffer_index], gyr_dps, 3 * sizeof(float));
tracker->buffer_index++;
if (tracker->buffer_index >= VARIANCE_BUFFER_SIZE) {
tracker->buffer_index = 0;
tracker->buffer_filled = 1; // 标记缓冲区已满
}
// --- 更新状态机 ---
update_state_machine(tracker, acc_device_ms2, gyr_dps);
// --- 根据状态执行不同的计算逻辑 ---
switch (tracker->state) {
case TAKING_OFF:
tracker->speed = 0.0f;
break;
case IN_AIR:
// 在空中时,只累加滞空时间
tracker->time_in_air += dt;
break;
case LANDING:
// 刚落地,计算空中距离
calculate_air_distance(tracker);
// 清理速度和滤波器状态,为恢复地面追踪做准备
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
break;
case WHEEL:
case NO_CONSTANT_SPEED:
float linear_acc_device[3];
float linear_acc_world[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, linear_acc_world);
// 将最终用于积分的加速度存入 tracker 结构体
memcpy(tracker->acc_no_g, linear_acc_world, sizeof(linear_acc_world));
float acc_world_temp[3]; // 临时变量存储当前周期的加速度
for (int i = 0; i < 2; i++) { // 只处理水平方向的 x 和 y 轴
// --- 核心修改:颠倒滤波器顺序为 HPF -> LPF ---
// 1. 高通滤波 (HPF) 先行: 消除因姿态误差导致的重力泄漏(直流偏置)
// HPF的瞬态响应会产生尖峰这是正常的。
tracker->acc_world_filtered[i] = HPF_ALPHA * (tracker->acc_world_filtered[i] + tracker->acc_no_g[i] - tracker->acc_world_unfiltered_prev[i]);
tracker->acc_world_unfiltered_prev[i] = tracker->acc_no_g[i];
// 2. 低通滤波 (LPF) 殿后: 平滑掉HPF产生的尖峰和传感器自身的高频振动噪声。
// 这里使用 tracker->acc_world_filtered[i] 作为LPF的输入。
tracker->acc_world_lpf[i] = (1.0f - LPF_ALPHA) * tracker->acc_world_filtered[i] + LPF_ALPHA * tracker->acc_world_lpf[i];
// 将最终处理完的加速度值存入临时变量
acc_world_temp[i] = tracker->acc_world_lpf[i];
}
// 计算处理后加速度的水平模长
float acc_horizontal_mag = sqrtf(acc_world_temp[0] * acc_world_temp[0] +
acc_world_temp[1] * acc_world_temp[1]);
#if XTELL_TEST
debug2.acc_magnitude = acc_horizontal_mag;
#endif
// 应用死区,并积分
if (acc_horizontal_mag > ACC_DEAD_ZONE_THRESHOLD) {
tracker->velocity[0] += acc_world_temp[0] * dt;
tracker->velocity[1] += acc_world_temp[1] * dt;
}
// 更新速度和距离
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
tracker->velocity[1] * tracker->velocity[1]);
tracker->distance += tracker->speed * dt;
break;
case CONSTANT_SPEED:
//保持上次的速度不变。只更新距离
tracker->distance += tracker->speed * dt;
break;
case STATIC:
case WOBBLE:
// 速度清零,抑制漂移
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0.0f;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
#if XTELL_TEST
debug2.acc_magnitude = 0;
#endif
break;
case FALLEN:
// TODO
break;
default:
break;
}
#if 1
float linear_acc_device[3];
float linear_acc_world[3];
float tmp_world_acc[3];
// remove_gravity_in_device_frame(acc_device_ms2,angle,tmp_device_acc);
// transform_acc_to_world_frame(acc_device_ms2,angle,tmp_world_acc);
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
q_remove_gravity_with_quaternion(acc_device_ms2,quaternion_data,tmp_device_acc);
q_transform_to_world_with_quaternion(tmp_device_acc,quaternion_data,tmp_world_acc);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, tmp_world_acc);
// 计算处理后加速度的水平模长
float all_device_mag = sqrtf(tmp_device_acc[0] * tmp_device_acc[0] +
tmp_device_acc[1] * tmp_device_acc[1] +
tmp_device_acc[2] * tmp_device_acc[2]);
float all_world_mag = sqrtf(tmp_world_acc[0] * tmp_world_acc[0] +
tmp_world_acc[1] * tmp_world_acc[1] +
tmp_world_acc[2] * tmp_world_acc[2]);
float gx_proj = 2.0f * (quaternion_data[1] * quaternion_data[3] - quaternion_data[0] * quaternion_data[2]);
float gy_proj = 2.0f * (quaternion_data[0] * quaternion_data[1] + quaternion_data[2] * quaternion_data[3]);
float gz_proj = quaternion_data[0] * quaternion_data[0] - quaternion_data[1] * quaternion_data[1] - quaternion_data[2] * quaternion_data[2] + quaternion_data[3] * quaternion_data[3];
static int count = 0;
if(count > 100){
xlog("===original(g): x %.2f, y %.2f, z %.2f===\n",acc_g[0],acc_g[1],acc_g[2]);
xlog("===device(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_device_acc[0],tmp_device_acc[1],tmp_device_acc[2],all_device_mag);
xlog("===world(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_world_acc[0],tmp_world_acc[1],tmp_world_acc[2],all_world_mag);
xlog("===gyr(dps) : x %.2f, y %.2f, z %.2f, all %.2f===\n",gyr_dps[0],gyr_dps[1],gyr_dps[2]); //angle
xlog("===world(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_world_acc[0],tmp_world_acc[1],tmp_world_acc[2],all_world_mag); //去掉重力加速度
xlog("===gyr(dps) : x %.2f, y %.2f, z %.2f===\n",gyr_dps[0],gyr_dps[1],gyr_dps[2]); //angle
xlog("===angle : x %.2f, y %.2f, z %.2f,===\n",angle[0],angle[1],angle[2]);
xlog("GRAVITY VECTOR in device frame: gx=%.2f, gy=%.2f, gz=%.2f\n", gx_proj, gy_proj, gz_proj);
extern mmc5603nj_cal_data_t cal_data;
xlog("cal_data:X: %.4f, Y: %.4f, Z: %.4f\n", cal_data.offset_x,cal_data.offset_y,cal_data.offset_z);
xlog("===speed(cm/s): %d\n",(int)(tracker->speed*100) );
count = 0;
}
count++;
#endif
}
@ -190,13 +570,14 @@ void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_d
* @param acc_data_buf 传入的三轴加速度数据
* @param gyr_data_buf 传入的三轴陀螺仪数据
* @param angle_data 传入的欧若拉角数据
* @return BLE_send_data_t 要发送给蓝牙的数据
* @return 速度cm/s
*/
BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion) {
uint16_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion) {
static int initialized = 0;
static float acc_data_g[3];
static float gyr_data_dps[3];
if(quaternion != NULL){
memcpy(quaternion_data, quaternion, 4 * sizeof(float));
}
@ -204,7 +585,6 @@ BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short*
// const float delta_time = DELTA_TIME+0.01f;
// const float delta_time = DELTA_TIME + 0.005f;
const float delta_time = DELTA_TIME;
BLE_send_data_t BLE_send_data;
if (!initialized) {
skiing_tracker_init(&my_skiing_tracker);
@ -249,22 +629,7 @@ BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short*
skiing_tracker_update(&my_skiing_tracker, acc_data_g, gyr_data_dps, angle_data, delta_time);
// BLE_send_data.skiing_state = my_skiing_tracker.state;
// for (int i = 0; i < 3; i++) {
// #ifdef XTELL_TEST
// BLE_send_data.acc_data[i] = (short)(acc_data_g[i] * 9.8f) * 100; //cm/^s2
// BLE_send_data.gyr_data[i] = (short)gyr_data_dps[i]; //dps
// BLE_send_data.angle_data[i] = angle_data[i];
// #else
// BLE_send_data.acc_data[i] = (short)acc_data_buf[i]; //原始adc数据
// BLE_send_data.gyr_data[i] = (short)gyr_data_buf[i]; //原始adc数据
// BLE_send_data.angle_data[i] = angle_data[i];
// #endif
// }
// BLE_send_data.speed_cms = (int)(my_skiing_tracker.speed * 100);
// BLE_send_data.distance_cm = (int)(my_skiing_tracker.distance * 100);
// // printf("Calculate the time interval =============== end\n");
return BLE_send_data;
return (uint16_t)(my_skiing_tracker.speed * 100);
}

View File

@ -2,6 +2,10 @@
#define SKIING_TRACKER_H
#include "../xtell.h"
#include <math.h>
#include <string.h>
// 定义滑雪者可能的状态
typedef enum {
STATIC, // 静止或动态稳定0
@ -30,7 +34,7 @@ typedef struct {
skiing_state_t state; // 当前滑雪状态
// 内部计算使用的私有成员
float acc_world[3]; // 在世界坐标系下的加速度
float acc_no_g[3]; // 去掉重力分量后的加速度
// 用于空中距离计算
float time_in_air; // 滞空时间计时器
@ -52,16 +56,7 @@ typedef struct {
float acc_world_lpf[3]; // 经过低通滤波后的世界坐标系加速度
} skiing_tracker_t;
//ble发送的数据
typedef struct{ //__attribute__((packed)){ //该结构体取消内存对齐
char sensor_state;
char skiing_state;
int speed_cms; //求出的速度cm/s
int distance_cm; //求出的距离cm
short acc_data[3]; //三轴加速度, g
short gyr_data[3]; //三轴陀螺仪, dps
float angle_data[3]; //欧若拉角
}BLE_send_data_t;
typedef struct{
int acc_KS[3]; //卡尔曼后LSB转换后的 三轴加速度数据cm/s^2
@ -84,5 +79,5 @@ typedef struct{
*/
void skiing_tracker_init(skiing_tracker_t *tracker);
BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion);
uint16_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion);
#endif // SKIING_TRACKER_H

View File

@ -6,6 +6,8 @@
#include "tone_player.h"
#include "ui_manage.h"
#include "gpio.h"
#include <math.h>
#include <string.h>
#include "app_main.h"
#include "asm/charge.h"
#include "update.h"
@ -24,6 +26,9 @@
#include "./sensor/MMC56.h"
#include "./sensor/BMP280.h"
#include "./sensor/AK8963.h"
#include "asm/rtc.h"
#include "system/timer.h"
#include "adv_time_stamp_setting.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
//宏定义
#define ENABLE_XLOG 1
@ -35,6 +40,9 @@
#else
#define xlog(format, ...) ((void)0)
#endif
#define SENSOR_DATA_BUFFER_SIZE 1000 // 定义缓冲区可以存储XXX个sensor_data_t元素
//
///////////////////////////////////////////////////////////////////////////////////////////////////
@ -42,496 +50,343 @@
//START -- 函数定义
void send_data_to_ble_client(const u8* data, u16 length);
extern void create_process(u16* pid, const char* name, void *priv, void (*func)(void *priv), u32 msec);
extern void close_process(u16* pid,char* name);
void start_collect_fuc(void);
void BLE_send_fuc(void);
//END -- 函数定义
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
//START -- 变量定义
static u32 timer_offset_ms = 0;
// --- 任务ID ---
static u16 xtell_i2c_test_id;
static u16 collect_data_id;
static u16 ble_send_data_id;
static u16 sensor_read_data_id;
static u16 calculate_data_id;
typedef struct {
// -- 六轴 --
signed short SC7U22_data[6];
// -- 磁力计 --
uint8_t mmc5603nj_buffer[9];
// -- 速度 --
uint16_t speed_cms;
// -- 气压计 --
int adc_P;
int adc_T;
// -- 左/右腿 --
uint8_t foot_state; //1左脚2右脚
// -- 时间 --
u32 timestamp_ms;
// --- 环形缓冲区 ---
#define SENSOR_DATA_BUFFER_SIZE 512
static u8 sensor_data_buffer[SENSOR_DATA_BUFFER_SIZE];
static circle_buffer_t sensor_cb;
} BLE_send_data_t;
static int count = 0;
//--- test ---
// 全局变量
u16 gsensor_id=0;
u16 test_id=0;
// --- 环形缓冲区 ---
static circle_buffer_t BLE_send_buff; // 环形缓冲区管理结构体
BLE_send_data_t BLE_send_data[SENSOR_DATA_BUFFER_SIZE];
// -- 任务id --
u16 SC7U22_calibration_id;
u16 start_collect_fuc_id;
u16 BLE_send_fuc_id;
//END -- 变量定义
//////////////////////////////////////////////////////////////////////////////////////////////////
#if 0
BLE_send_data_t BLE_send_data;
void test(){
signed short acc_data_buf[3] = {0};
signed short gyr_data_buf[3] = {0};
signed short acc_gyro_input[6] = {0};
float Angle_output[3] = {0};
// xlog("============start\n");
SL_SC7U22_RawData_Read(acc_data_buf,gyr_data_buf);
BLE_send_data = sensor_processing_task(acc_data_buf, gyr_data_buf);
u8 data[50];
data[0] = 0xBB;
data[1] = 0xBE;
data[2] = 0x01;
data[3] = sizeof(BLE_send_data_t); //后续包的数据长度
// send_data_to_ble_client(&data,sizeof(BLE_send_data_t)+4);
memcpy(&data[4], &BLE_send_data, sizeof(BLE_send_data_t));
static int count = 0;
if(count >=10){
count = 0;
char* division = "==========\n";
send_data_to_ble_client(division,strlen(division));
char log_buffer[100]; // 100个字符应该足够了
// 使用 snprintf 进行格式化
int num_chars_written = snprintf(
log_buffer, // 目标缓冲区
sizeof(log_buffer), // 目标缓冲区的最大容量
"s %d, %dcm/s, %dcm\n", // 格式化字符串
BLE_send_data.skiing_state, // 第一个 %d 的参数
BLE_send_data.speed_cms, // 第二个 %d 的参数
BLE_send_data.distance_cm // 第三个 %d 的参数
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
extern BLE_KS_send_data_t KS_data;
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"Acc:%d, %d, %d\n",
KS_data.acc_KS[0],KS_data.acc_KS[1],KS_data.acc_KS[2]
); // cm/s^2
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"Gyr_dps:%d, %d, %d\n",
KS_data.gyr_KS_dps[0],
KS_data.gyr_KS_dps[1],
KS_data.gyr_KS_dps[2]
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"angle: %d, %d, %d\n",
KS_data.angle_KS[0],
KS_data.angle_KS[1],
KS_data.angle_KS[2]
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
extern debug_t debug1;
extern debug_t debug2;
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"debug:%.2f,%.2f,%.2f(%.2f),%.2f\n",
debug1.acc_variance,
debug1.gyr_variance,
debug1.acc_magnitude,
debug2.acc_magnitude, //滤波后的加速度
debug1.gyr_magnitude
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
xlog("Call interval\n");
}
count++;
memset(&BLE_send_data, 0, sizeof(BLE_send_data_t));
memset(&data, 0, 50);
// xlog("end============\n");
// 重置计时器
void reset_ms_timer(void) {
timer_offset_ms = sys_timer_get_ms();
xlog("Timer has been reset.\n");
}
#endif
// 获取从上次重置后经过的毫秒数
u32 get_ms_timer(void) {
return sys_timer_get_ms() - timer_offset_ms;
}
#define SENSOR_DATA_BUFFER_SIZE 500 // 定义缓冲区可以存储100个sensor_data_t元素
static circle_buffer_t sensor_read; // 环形缓冲区管理结构体
typedef struct {
signed short acc_data[3];
signed short gyr_data[3];
float angle[3]; //pitch roll yaw
float quaternion_output[4]; //四元数数据
} sensor_data_t;
static sensor_data_t sensor_read_buffer[SENSOR_DATA_BUFFER_SIZE]; // 存放sensor读到的数据
static circle_buffer_t sensor_send; // 环形缓冲区管理结构体
static BLE_send_data_t sensor_send_buffer[SENSOR_DATA_BUFFER_SIZE]; // 存放ble要发送的数据
static u8 mutex1 = 0;
static u8 mutex2 = 0;
static int count_test1 = 0;
static int count_test2 = 0;
// ----------------------------------------------------------------------------------------------------------------
// --------------------------------------------定时器回调函数----------------------------------------------------------
/**
* @brief //读取传感器的数据放进缓冲区
* @brief 六轴静态校准
*
*/
void sensor_read_data(){
void SC7U22_static_calibration(void){
signed short acc_data_buf[3];
signed short gyr_data_buf[3];
float angle[3];
float quaternion_output[3];
// xlog("=======sensor_read_data START\n");
static signed short combined_raw_data[6];
static int initialized = 0;
static int calibration_done = 0;
char status = 0;
if(circle_buffer_is_full(&sensor_read)){
// xlog("sensor_read_data: read buffer full\n");
return;
static first_set_flag = 0;
if(first_set_flag == 0){
first_set_flag = 1;
set_SC7U22_Error_Flag(0);
}
SL_SC7U22_RawData_Read(acc_data_buf,gyr_data_buf);
memcpy(&combined_raw_data[0], acc_data_buf, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], gyr_data_buf, 3 * sizeof(signed short));
status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, angle,NULL, 0, quaternion_output);
static sensor_data_t tmp;
SL_SC7U22_RawData_Read(tmp.acc_data,tmp.gyr_data);
// xlog("=======sensor_read_data middle 1\n");
memcpy(&combined_raw_data[0], tmp.acc_data, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], tmp.gyr_data, 3 * sizeof(signed short));
if (!calibration_done) { //第1次启动开启零漂检测
// status = SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle,NULL, 0, tmp.quaternion_output);
if(count > 100){
count = 0;
char log_buffer[100]; // 100个字符应该足够了
// snprintf( log_buffer, sizeof(log_buffer),"status:%d\n",status);
// send_data_to_ble_client(&log_buffer,strlen(log_buffer));
xlog("status:%d\n", status);
}
count++;
if (status == 1) {
calibration_done = 1;
printf("Sensor calibration successful! Skiing mode is active.\n");
}
} else {
// printf("Calculate the time interval =============== start\n");
// status = SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle,NULL, 0, tmp.quaternion_output);
memcpy(tmp.acc_data, &combined_raw_data[0], 3 * sizeof(signed short));
memcpy(tmp.gyr_data, &combined_raw_data[3], 3 * sizeof(signed short));
if(mutex1 == 0){
mutex1 = 1;
// count_test1++;
// xlog("count_test_1: %d\n",count_test1);
circle_buffer_write(&sensor_read, &tmp);
mutex1 = 0;
}
extern void ano_send_attitude_data(float rol, float pit, float yaw, uint8_t fusion_sta) ;
ano_send_attitude_data(tmp.angle[0],tmp.angle[1],tmp.angle[2], 1);
if(status == 1){ //校准完成
extern u16 SC7U22_calibration_id;
extern u8 SC7U22_init;
first_set_flag = 0;
SC7U22_init = 0x11;
close_process(&SC7U22_calibration_id, "SC7U22_calibration");
u8 send2_1[5] = {0xBB,0xBE,0x02,0x00,0x00};
send2_1[4] = SC7U22_init;
send_data_to_ble_client(&send2_1,5);
}
// xlog("=======sensor_read_data END\n");
}
void calculate_data(){
// xlog("=======start\n");
sensor_data_t tmp;
if(circle_buffer_is_empty(&sensor_read)){
// xlog("sensor_read_buffer: read buffer empty\n");
return;
}
if(mutex1 == 0){
mutex1 = 1;
circle_buffer_read(&sensor_read, &tmp);
mutex1 = 0;
}else{
return;
}
BLE_send_data_t data_by_calculate = sensor_processing_task(tmp.acc_data, tmp.gyr_data,tmp.angle,tmp.quaternion_output);
if(circle_buffer_is_full(&sensor_send))
return;
if(mutex2 == 0){
mutex2 = 1;
circle_buffer_write(&sensor_send, &data_by_calculate);
mutex2 = 0;
}
// extern void BLE_send_data();
// BLE_send_data();
// xlog("=======end\n");
}
extern char xt_Check_Flag;
void BLE_send_data(){
// xlog("=======start\n");
if(circle_buffer_is_empty(&sensor_send)){
// xlog("sensor_send_buffer: send buffer empty\n");
return;
}
#ifdef XTELL_TEST
// #if 0
BLE_send_data_t tmp;
if(mutex2 == 0){
mutex2 = 1;
circle_buffer_read(&sensor_send, &tmp);
mutex2 = 0;
}else{
return;
}
if(count >=100){
// extern debug_t debug2;
// xlog("s %d, %dcm/s, %dcm\n",tmp.skiing_state, tmp.speed_cms, tmp.distance_cm);
// xlog("Acc:%d, %d, %d\n",tmp.acc_data[0],tmp.acc_data[1],tmp.acc_data[2]);
// xlog("Gyr:%d, %d, %d\n", tmp.gyr_data[0],tmp.gyr_data[1],tmp.gyr_data[2]);
// xlog("debug2.acc_magnitude:%.2f\n", debug2.acc_magnitude);
int num_chars_written;
if(count > 100){
count = 0;
char* division = "==========\n";
send_data_to_ble_client(division,strlen(division));
char log_buffer[100]; // 100个字符应该足够了
// extern char iic_read_len;
// extern char iic_write_result;
// num_chars_written = snprintf(log_buffer, sizeof(log_buffer),"SL_SC7U22_Check=0x%d, %d, %d\n", xt_Check_Flag, iic_read_len, iic_write_result);
char log_buffer[100];
// snprintf( log_buffer, sizeof(log_buffer),"status:%d\n",status);
// send_data_to_ble_client(&log_buffer,strlen(log_buffer));
memset(&log_buffer, 0, 100);
#if 1
// 使用 snprintf 进行格式化
num_chars_written = snprintf(
log_buffer, // 目标缓冲区
sizeof(log_buffer), // 目标缓冲区的最大容量
"s %d, %dcm/s, %dcm\n", // 格式化字符串
tmp.skiing_state, // 第一个 %d 的参数
tmp.speed_cms, // 第二个 %d 的参数
tmp.distance_cm // 第三个 %d 的参数
);
send_data_to_ble_client(&log_buffer, strlen(log_buffer));
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"Acc:%d, %d, %d\n",
tmp.acc_data[0],tmp.acc_data[1],tmp.acc_data[2]
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"Gyr:%d, %d, %d\n",
tmp.gyr_data[0],tmp.gyr_data[1],tmp.gyr_data[2]
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"Angle:%.1f, %.1f, %1.f\n",
tmp.angle_data[0],tmp.angle_data[1],tmp.angle_data[2]
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
#endif
short acc_mo_cms = sqrtf(tmp.acc_data[0]*tmp.acc_data[0] + tmp.acc_data[1]*tmp.acc_data[1] + tmp.acc_data[2]*tmp.acc_data[2])-900;
memset(&log_buffer, 0, 100);
num_chars_written = snprintf(
log_buffer,
sizeof(log_buffer),
"acc_cm/s^2:%d\n",
acc_mo_cms
);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
// xlog("s %d, %dcm/s, %dcm\n",tmp.skiing_state, tmp.speed_cms, tmp.distance_cm);
// xlog("Acc:%d, %d, %d\n", tmp.acc_data[0],tmp.acc_data[1],tmp.acc_data[2]);
// xlog("GYR:%d, %d, %d\n", tmp.gyr_data[0],tmp.gyr_data[1],tmp.gyr_data[2]);
xlog("status:%d\n", status);
xlog("RawData:AX=%d,AY=%d,AZ=%d,GX=%d,GY=%d,GZ=%d\r\n",combined_raw_data[0],combined_raw_data[1],combined_raw_data[2],combined_raw_data[3],combined_raw_data[4],combined_raw_data[5]);
}
count++;
// xlog("=======end\n");
#else
#endif
}
//iic测试调用的
#if 0
static u16 xt_iic_test_id;
char log_buffer_1[100];
extern char sen_log_buffer_1[100];
extern char sen_log_buffer_2[100];
extern char sen_log_buffer_3[100];
extern char sen_log_buffer_4[100];
extern char sen_log_buffer_5[100];
extern char w_log_buffer_1[100];
extern char w_log_buffer_2[100];
extern char w_log_buffer_3[100];
extern char w_log_buffer_4[100];
extern char w_log_buffer_5[100];
void xt_iic_test(){
char log_buffer[100];
send_data_to_ble_client(&log_buffer_1,strlen(log_buffer_1));
extern char iic_read_len;
extern char iic_write_result;
int num_chars_written = snprintf(log_buffer, sizeof(log_buffer),"SL_SC7U22_Check=0x%d,%d,%d\n", xt_Check_Flag, iic_read_len, iic_write_result);
extern void send_data_to_ble_client(const u8* data, u16 length);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
if(sen_log_buffer_1 != NULL)
send_data_to_ble_client(&sen_log_buffer_1,strlen(sen_log_buffer_1));
if(sen_log_buffer_2 != NULL)
send_data_to_ble_client(&sen_log_buffer_2,strlen(sen_log_buffer_2));
if(sen_log_buffer_3 != NULL)
send_data_to_ble_client(&sen_log_buffer_3,strlen(sen_log_buffer_3));
if(sen_log_buffer_4 != NULL)
send_data_to_ble_client(&sen_log_buffer_4,strlen(sen_log_buffer_4));
if(sen_log_buffer_5 != NULL)
send_data_to_ble_client(&sen_log_buffer_5,strlen(sen_log_buffer_5));
if(w_log_buffer_1 != NULL)
send_data_to_ble_client(&w_log_buffer_1,strlen(w_log_buffer_1));
if(w_log_buffer_2 != NULL)
send_data_to_ble_client(&w_log_buffer_2,strlen(w_log_buffer_2));
if(w_log_buffer_3 != NULL)
send_data_to_ble_client(&w_log_buffer_3,strlen(w_log_buffer_3));
if(w_log_buffer_4 != NULL)
send_data_to_ble_client(&w_log_buffer_4,strlen(w_log_buffer_4));
if(w_log_buffer_5 != NULL)
send_data_to_ble_client(&w_log_buffer_5,strlen(w_log_buffer_5));
// SL_SC7U22_Config();
}
#endif
#if 0
u16 xt_iic_test_id;
char hw_iic_init_result;
void xt_hw_iic_test(){
char log_buffer[100];
extern char iic_read_len;
extern char iic_write_result;
int num_chars_written = snprintf(log_buffer, sizeof(log_buffer),"init result:%d, SL_SC7U22_Check=0x%d,%d,%d\n",hw_iic_init_result, xt_Check_Flag, iic_read_len, iic_write_result);
extern void send_data_to_ble_client(const u8* data, u16 length);
send_data_to_ble_client(&log_buffer,strlen(log_buffer));
}
#endif
void sensor_measure(void){
/**
* @brief 开始采集传感器数据和计算速度
*
*/
void start_collect_fuc(void){
// xlog("=======sensor_read_data START\n");
static signed short combined_raw_data[6];
static int initialized = 0;
static int calibration_done = 0;
char status = 0;
BLE_send_data_t BLE_send_data_tmp;
uint8_t mmc5603nj_buffer[9];
signed short acc_data_buf[3];
signed short gyr_data_buf[3];
float angle[3];
float quaternion_output[3];
// -- 读数据 --
SL_SC7U22_RawData_Read(acc_data_buf,gyr_data_buf);
mmc5603nj_read_origin_data(mmc5603nj_buffer);
bmp280_read_originanl_data(&BLE_send_data_tmp.adc_P, &BLE_send_data_tmp.adc_T);
static sensor_data_t tmp;
mmc5603nj_mag_data_t mag_data;
SL_SC7U22_RawData_Read(tmp.acc_data,tmp.gyr_data);
// os_time_dly(1);
mmc5603nj_read_mag_data(&mag_data);
// xlog("=======sensor_read_data middle 1\n");
memcpy(&combined_raw_data[0], tmp.acc_data, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], tmp.gyr_data, 3 * sizeof(signed short));
memcpy(&combined_raw_data[0], acc_data_buf, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], gyr_data_buf, 3 * sizeof(signed short));
if (!calibration_done) { //第1次启动开启零漂检测
// status = SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle,&mag_data, 0, tmp.quaternion_output);
// -- 四元数 --
status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, angle,NULL, 0, quaternion_output);
if(count > 100){
count = 0;
char log_buffer[100];
// snprintf( log_buffer, sizeof(log_buffer),"status:%d\n",status);
// send_data_to_ble_client(&log_buffer,strlen(log_buffer));
xlog("status:%d\n", status);
xlog("RawData:AX=%d,AY=%d,AZ=%d,GX=%d,GY=%d,GZ=%d\r\n",combined_raw_data[0],combined_raw_data[1],combined_raw_data[2],combined_raw_data[3],combined_raw_data[4],combined_raw_data[5]);
}
count++;
// -- 速度计算 --
memcpy(acc_data_buf, &combined_raw_data[0], 3 * sizeof(signed short));
memcpy(gyr_data_buf, &combined_raw_data[3], 3 * sizeof(signed short));
uint16_t speed = sensor_processing_task(acc_data_buf,gyr_data_buf,angle, quaternion_output);
if (status == 1) {
calibration_done = 1;
printf("Sensor calibration successful! Skiing mode is active.\n");
}
} else {
// printf("Calculate the time interval =============== start\n");
// status = SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle,&mag_data, 0, tmp.quaternion_output);
memcpy(tmp.acc_data, &combined_raw_data[0], 3 * sizeof(signed short));
memcpy(tmp.gyr_data, &combined_raw_data[3], 3 * sizeof(signed short));
BLE_send_data_t data_by_calculate = sensor_processing_task(tmp.acc_data, tmp.gyr_data,tmp.angle, tmp.quaternion_output);
extern void ano_send_attitude_data(float rol, float pit, float yaw, uint8_t fusion_sta) ;
ano_send_attitude_data(tmp.angle[0],tmp.angle[1],tmp.angle[2], 1);
// -- 数据包装进结构体 --
memcpy(&BLE_send_data_tmp.SC7U22_data[0], acc_data_buf, 3 * sizeof(signed short));
memcpy(&BLE_send_data_tmp.SC7U22_data[3], gyr_data_buf, 3 * sizeof(signed short));
memcpy(BLE_send_data_tmp.mmc5603nj_buffer, mmc5603nj_buffer, 9);
BLE_send_data_tmp.speed_cms = speed;
extern u8 foot_init;
BLE_send_data_tmp.foot_state = foot_init;
BLE_send_data_tmp.timestamp_ms = get_ms_timer();
// -- 放进缓冲区 --
if(circle_buffer_is_full(&BLE_send_buff) == 0){
circle_buffer_write(&BLE_send_buff, &BLE_send_data_tmp);
}
// mmc5603nj_mag_data_t mag_data;
// mmc5603nj_read_mag_data(&mag_data);
// float temperature = mmc5603nj_get_temperature();
// count_test1++;
// if(count_test1 >500){
// count_test1 =0;
// xlog("Mag X: %.4f, Y: %.4f, Z: %.4f Gauss\n", mag_data.x, mag_data.y, mag_data.z);
// }
// xlog("=======sensor_read_data END\n");
}
/**
* @brief ble数据发送函数
*
*/
void BLE_send_fuc(void){
BLE_send_data_t data_to_send;
if (circle_buffer_is_empty(&BLE_send_buff) == 0) {
circle_buffer_read(&BLE_send_buff, &data_to_send);
} else {
// 缓冲区为空,直接返回
return;
}
// --- 封装并发送六轴传感器数据 ---
{
// 协议定义: 包头(2) + 长度(1) + 类型(1) + 数据(12) = 16字节
const uint8_t IMU_PACKET_LEN = 16;
const uint8_t IMU_PAYLOAD_LEN = 13; // 类型(1) + 数据(12)
const uint8_t IMU_TYPE = 0x01;
uint8_t imu_packet[IMU_PACKET_LEN];
// 填充包头
imu_packet[0] = 0xBB;
imu_packet[1] = 0xBE;
imu_packet[2] = IMU_PAYLOAD_LEN;
imu_packet[3] = IMU_TYPE;
// 拷贝六轴数据
// memcpy(&imu_packet[4], data_to_send.SC7U22_data, sizeof(data_to_send.SC7U22_data));
for (int i = 0; i < 6; i++) {
// SC7U22_data[i] 是一个 signed short (2字节)
// 将其低字节放在前面
imu_packet[4 + i * 2] = (uint8_t)(data_to_send.SC7U22_data[i] & 0xFF);
// 将其高字节放在后面
imu_packet[4 + i * 2 + 1] = (uint8_t)((data_to_send.SC7U22_data[i] >> 8) & 0xFF);
}
// xlog("imu %d\n",data_to_send.SC7U22_data[0]);
// xlog("imu_packet: 0x%x 0x%x 0x%x\n",imu_packet[4],imu_packet[5],imu_packet[6]);
send_data_to_ble_client(&imu_packet, IMU_PACKET_LEN);
}
// --- 封装并发送磁力计数据 ---
{
// 协议定义: 包头(2) + 长度(1) + 类型(1) + 数据(9) = 13字节
const uint8_t MAG_PACKET_LEN = 13;
const uint8_t MAG_PAYLOAD_LEN = 10; // 类型(1) + 数据(9)
const uint8_t MAG_TYPE = 0x02;
uint8_t mag_packet[MAG_PACKET_LEN];
// 填充包头
mag_packet[0] = 0xBB;
mag_packet[1] = 0xBE;
mag_packet[2] = MAG_PAYLOAD_LEN;
mag_packet[3] = MAG_TYPE;
// 拷贝磁力计数据
// memcpy(&mag_packet[4], data_to_send.mmc5603nj_buffer, sizeof(data_to_send.mmc5603nj_buffer));
for (int i = 0; i < 9; i++) {
mag_packet[4 + i] = data_to_send.mmc5603nj_buffer[i];
}
// xlog("mag: 0x%x 0x%x 0x%x\n",mag_packet[4],mag_packet[5],mag_packet[6]);
send_data_to_ble_client(&mag_packet, MAG_PACKET_LEN);
}
// --- 封装并发送压力机计数据 ---
{
// 协议定义: 包头(2) + 长度(1) + 类型(1) + 数据(8) = 12字节
const uint8_t PT_PACKET_LEN = 12;
const uint8_t PT_PAYLOAD_LEN = 9; // 类型(1) + 数据(8)
const uint8_t PT_TYPE = 0x03;
uint8_t pt_packet[PT_PACKET_LEN];
// 填充包头
pt_packet[0] = 0xBB;
pt_packet[1] = 0xBE;
pt_packet[2] = PT_PAYLOAD_LEN;
pt_packet[3] = PT_TYPE;
// 打包压力数据 data_to_send.adc_P (占 pt_packet[4] 到 pt_packet[7])
pt_packet[4] = (uint8_t)(data_to_send.adc_P & 0xFF); // 最低字节 (LSB)
pt_packet[5] = (uint8_t)((data_to_send.adc_P >> 8) & 0xFF);
pt_packet[6] = (uint8_t)((data_to_send.adc_P >> 16) & 0xFF);
pt_packet[7] = (uint8_t)((data_to_send.adc_P >> 24) & 0xFF); // 最高字节 (MSB)
// 打包温度数据 data_to_send.adc_T (占 pt_packet[8] 到 pt_packet[11])
pt_packet[8] = (uint8_t)(data_to_send.adc_T & 0xFF); // 最低字节 (LSB)
pt_packet[9] = (uint8_t)((data_to_send.adc_T >> 8) & 0xFF);
pt_packet[10] = (uint8_t)((data_to_send.adc_T >> 16) & 0xFF);
pt_packet[11] = (uint8_t)((data_to_send.adc_T >> 24) & 0xFF); // 最高字节 (MSB)
send_data_to_ble_client(&pt_packet, PT_PACKET_LEN);
}
// --- 封装并发送速度数据 ---
{
// 协议定义: 包头(2) + 长度(1) + 类型(1) + 数据(2) = 6字节
const uint8_t SPEED_PACKET_LEN = 6;
const uint8_t SPEED_PAYLOAD_LEN = 3; // 类型(1) + 数据(2)
const uint8_t SPEED_TYPE = 0x04;
uint8_t speed_packet[SPEED_PACKET_LEN];
// 填充包头
speed_packet[0] = 0xBB;
speed_packet[1] = 0xBE;
// 填充长度
speed_packet[2] = SPEED_PAYLOAD_LEN;
// 填充类型
speed_packet[3] = SPEED_TYPE;
// 小端模式
speed_packet[4] = (uint8_t)(data_to_send.speed_cms & 0xFF); // 低字节
speed_packet[5] = (uint8_t)((data_to_send.speed_cms >> 8) & 0xFF); // 高字节
send_data_to_ble_client(&speed_packet, SPEED_PACKET_LEN);
}
// --- 封装并发送数据 ---
{
// 协议定义: 包头(2) + 长度(1) + 类型(1) + 数据(5) = 9字节
const uint8_t OTHER_PACKET_LEN = 9;
const uint8_t OTHER_PAYLOAD_LEN = 6; // 类型(1) + 数据(5)
const uint8_t OTHER_TYPE = 0x05;
uint8_t oher_packet[OTHER_PACKET_LEN];
// 填充包头
oher_packet[0] = 0xBB;
oher_packet[1] = 0xBE;
// 填充长度
oher_packet[2] = OTHER_PACKET_LEN;
// 填充类型
oher_packet[3] = OTHER_TYPE;
// 小端模式
oher_packet[4] = (uint8_t)data_to_send.foot_state; // 数据来源
oher_packet[5] = (uint8_t)((data_to_send.timestamp_ms >> 0) & 0xFF); // LSB
oher_packet[6] = (uint8_t)((data_to_send.timestamp_ms >> 8) & 0xFF);
oher_packet[7] = (uint8_t)((data_to_send.timestamp_ms >> 16) & 0xFF);
oher_packet[8] = (uint8_t)((data_to_send.timestamp_ms >> 24) & 0xFF); // MSB
send_data_to_ble_client(&oher_packet, OTHER_PACKET_LEN);
}
}
// ------------------------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------------------------
/**
* @brief 六轴静态校验
*
*/
void start_calibration(void){
create_process(&SC7U22_calibration_id,"SC7U22_calibration",NULL,SC7U22_static_calibration,10);
}
/**
* @brief 开始采集传感器数据并通过ble发送
*
*/
void start_clloct(void){
reset_ms_timer();
create_process(&start_collect_fuc_id,"start_collect",NULL,start_collect_fuc,10);
create_process(&BLE_send_fuc_id,"BLE_send_fuc",NULL,BLE_send_fuc,1);
}
/**
* @brief 停止采集和ble发送
*
*/
void stop_clloct(void){
close_process(&start_collect_fuc_id,"start_collect");
close_process(&BLE_send_fuc_id,"BLE_send_fuc");
}
/**
* @brief 初始化在app_main.c的app_main函数被调用
*
*/
void xtell_task_create(void){
// int ret = hw_iic_init(0);
// xlog("hw_iic_init result:%d\n",ret);
// //初始化传感器
// SL_SC7U22_Config();
#if TCFG_GSENOR_USER_IIC_TYPE
int ret = hw_iic_init(0);
xlog("init iic result:%d\n", ret); //返回0成功
#else
@ -540,57 +395,46 @@ void xtell_task_create(void){
#endif
gpio_set_direction(IO_PORTE_05,0); //设置PE5 输出模式
gpio_set_pull_up(IO_PORTE_05,1);
gpio_direction_output(IO_PORTE_05,1);
// os_time_dly(10);
// delay_2ms(10);
// if(bmp280_init() != 0){
// xlog("bmp280 init error\n");
// }
// float temp, press;
// bmp280_read_data(&temp, &press);
// xlog("get temp: %d, get press: %d\n",temp, press);
// MPU9250_Mag_Init();
//iic总线设备扫描
// extern void i2c_scanner_probe(void);
// i2c_scanner_probe();
xlog("xtell_task_create\n");
// 初始化环形缓冲区
// circle_buffer_init(&sensor_cb, sensor_data_buffer, SENSOR_DATA_BUFFER_SIZE);
circle_buffer_init(&BLE_send_buff, BLE_send_data, SENSOR_DATA_BUFFER_SIZE, sizeof(BLE_send_data_t));
ano_protocol_init(115200);
circle_buffer_init(&sensor_read, sensor_read_buffer, SENSOR_DATA_BUFFER_SIZE, sizeof(sensor_data_t));
circle_buffer_init(&sensor_send, sensor_send_buffer, SENSOR_DATA_BUFFER_SIZE, sizeof(BLE_send_data_t));
//初始化滑雪追踪器
// SkiingTracker_Init(&skiing_data);
xlog("SkiingTracker_Init\n");
// create_process(&sensor_read_data_id, "read",NULL, sensor_read_data, 10);
//
// create_process(&calculate_data_id, "calculate",NULL, calculate_data, 4);
// create_process(&ble_send_data_id, "send",NULL, BLE_send_data, 1);
#if 0
hw_iic_init_result = ret;
create_process(&xt_iic_test_id,"iic_test",NULL,xt_hw_iic_test,1000);
#endif
}
//////////////////////////////////////////////////////////////////////////////
//test
//
void bmp280_test(void){
}
void gsensor_test(void){
#if 1
if(count >= 5){
xlog("==============time============\n");
u32 current_time = get_ms_timer();
xlog("Time since last reset: %u ms\n", current_time);
// 为了演示,我们在这里调用重置
if (current_time > 5000) { // 比如超过5秒就重置一次
reset_ms_timer();
}
count = 0;
}
count++;
#endif
}

View File

@ -112,13 +112,14 @@ uint8_t bmp280_init(void) {
printf("bmp280 check diff:%d\n",id );
return 1; // ID不匹配
}
printf("bmp280 get id:0%X\n",id );
// 2. 软复位
bmp280_write_reg(BMP280_REG_RESET, 0xB6);
os_time_dly(10); // 等待复位完成
// 3. 一次性读取所有校准参数
if (bmp280_read_regs(BMP280_REG_CALIB_START, calib_data, 24) != 0) {
if (bmp280_read_regs(BMP280_REG_CALIB_START, calib_data, 24) == 0) {
return 2; // 读取校准数据失败
}
@ -147,18 +148,29 @@ uint8_t bmp280_init(void) {
os_time_dly(10); // 等待配置生效
printf("bmp280 init success\n");
return 0; // 初始化成功
}
/**
* @brief 获取转换后的温度和压力数据
*
* @param temperature 传出,温度
* @param pressure 传出,压力
* @return uint8_t
*/
uint8_t bmp280_read_data(float *temperature, float *pressure) {
uint8_t data[6];
int32_t adc_P, adc_T;
// printf("==========debug1===========\n");
// 一次性读取6个字节的温度和气压原始数据
if (bmp280_read_regs(BMP280_REG_PRESS_MSB, data, 6) != 0) {
if (bmp280_read_regs(BMP280_REG_PRESS_MSB, data, 6) == 0) {
printf("bmp280:read data error\n");
return 1; // 读取失败
}
// printf("==========debug2===========\n");
// 组合原始数据 (20位)
adc_P = (int32_t)((((uint32_t)(data[0])) << 12) | (((uint32_t)(data[1])) << 4) | (((uint32_t)(data[2])) >> 4));
adc_T = (int32_t)((((uint32_t)(data[3])) << 12) | (((uint32_t)(data[4])) << 4) | (((uint32_t)(data[5])) >> 4));
@ -167,12 +179,33 @@ uint8_t bmp280_read_data(float *temperature, float *pressure) {
if (adc_T == 0x80000 || adc_P == 0x80000) {
*temperature = 0.0f;
*pressure = 0.0f;
printf("bmp280:no data\n");
return 1;
}
// printf("==========debug3===========\n");
// 进行补偿计算
*temperature = compensate_temperature(adc_T);
*pressure = compensate_pressure(adc_P);
return 0; // 成功
}
/**
* @brief 获取该气压计的原始adc数据
*
* @param adc_P 传出,气压
* @param adc_T 传出,温度
*/
void bmp280_read_originanl_data(int* adc_P, int* adc_T){
uint8_t data[6];
// 一次性读取6个字节的温度和气压原始数据
if (bmp280_read_regs(BMP280_REG_PRESS_MSB, data, 6) != 0) {
return; // 读取失败
}
// 组合原始数据 (20位)
adc_P = (int32_t)((((uint32_t)(data[0])) << 12) | (((uint32_t)(data[1])) << 4) | (((uint32_t)(data[2])) >> 4));
adc_T = (int32_t)((((uint32_t)(data[3])) << 12) | (((uint32_t)(data[4])) << 4) | (((uint32_t)(data[5])) >> 4));
}

View File

@ -8,11 +8,11 @@
// I2C 从设备地址
#if BMP_PULL_UP == 1 //外部接的高
#define BMP_IIC_7BIT_ADDRESS 0x77 //7位,外部接高为0x77
#define BMP_IIC_7BIT_ADDRESS 0x76 //7位,外部接高为0x77
#define BMP_IIC_WRITE_ADDRESS (BMP_IIC_7BIT_ADDRESS<<1) //8位地址
#define BMP_IIC_READ_ADDRESS (BMP_IIC_WRITE_ADDRESS | 0x01)
#else
#define BMP_IIC_7BIT_ADDRESS 0x76 //7位,外部接低为0x76
#define BMP_IIC_7BIT_ADDRESS 0x77 //7位,外部接低为0x76
#define BMP_IIC_WRITE_ADDRESS (BMP_IIC_7BIT_ADDRESS<<1) //8位地址
#define BMP_IIC_READ_ADDRESS (BMP_IIC_WRITE_ADDRESS | 0x01)
#endif
@ -43,4 +43,12 @@ uint8_t bmp280_init(void);
*/
uint8_t bmp280_read_data(float *temperature, float *pressure);
/**
* @brief 获取该气压计的原始adc数据
*
* @param adc_P 传出,气压
* @param adc_T 传出,温度
*/
void bmp280_read_originanl_data(int* adc_P, int* adc_T);
#endif // BMP280_DRIVER_H

View File

@ -6,6 +6,9 @@
#include "gSensor/gSensor_manage.h"
#include "printf.h"
#define CALIBRATION_TIME 20000 //校准持续时间 ms
#define SAMPLE_INTERVAL 100 //校准采样间隔
// 用于跟踪当前是否处于连续测量模式
static uint8_t g_continuous_mode_enabled = 0;
mmc5603nj_cal_data_t cal_data; //校准数据
@ -27,9 +30,9 @@ uint8_t mmc5603nj_get_pid(void) {
int mmc5603nj_init(void) {
// ID
if (mmc5603nj_get_pid() != 0x80) {
if ( mmc5603nj_get_pid() != 0x10) {
printf("MMC5603NJ init failed: wrong Product ID (read: 0x%X)\n", mmc5603nj_get_pid());
return -1;
// return 0;
}
// 软件复位
@ -55,17 +58,16 @@ int mmc5603nj_init(void) {
mmc5603nj_enable_continuous_mode(0x04);
return 1;
}
void mmc5603nj_start_calibration(void){
printf("\n--- Magnetometer Calibration Start ---\n");
printf("Slowly rotate the device in all directions (like drawing a 3D '8')...\n");
printf("Calibration will last for 20 seconds.\n\n");
printf("will start after 5 seconds\n\n");
os_time_dly(500);
// 定义校准时长和采样间隔
const uint32_t calibration_duration_ms = 20000; // 20秒
const uint32_t sample_interval_ms = 100; // 每100ms采样一次
// 初始化最大最小值
// 使用一个临时变量来读取数据避免干扰read函数的正常逻辑
mmc5603nj_mag_data_t temp_mag_data;
@ -81,7 +83,7 @@ int mmc5603nj_init(void) {
uint32_t start_time = os_time_get(); // 假设os_time_get()返回毫秒级时间戳
int samples = 0;
int over = calibration_duration_ms/sample_interval_ms;
int over = CALIBRATION_TIME/SAMPLE_INTERVAL;
while (samples <= over) {
// 读取原始磁力计数据
@ -98,7 +100,7 @@ int mmc5603nj_init(void) {
if (temp_mag_data.z < min_z) min_z = temp_mag_data.z;
samples++;
os_time_dly(sample_interval_ms / 10); // os_time_dly的参数通常是ticks (1 tick = 10ms)
os_time_dly(SAMPLE_INTERVAL / 10);
}
// 检查数据范围是否合理,防止传感器未动或故障
@ -106,7 +108,7 @@ int mmc5603nj_init(void) {
printf("\n--- Calibration Failed ---\n");
printf("Device might not have been rotated enough.\n");
printf("X range: %.2f, Y range: %.2f, Z range: %.2f\n", max_x - min_x, max_y - min_y, max_z - min_z);
return -1;
return;
}
// 计算硬磁偏移 (椭球中心)
@ -121,8 +123,6 @@ int mmc5603nj_init(void) {
printf(" Y: %.4f\n", cal_data.offset_y);
printf(" Z: %.4f\n", cal_data.offset_z);
printf("Please save these values and apply them in your code.\n\n");
return 0;
}
@ -219,3 +219,41 @@ void mmc5603nj_read_mag_data(mmc5603nj_mag_data_t *mag_data) {
mag_data->y -= cal_data.offset_y;
mag_data->z -= cal_data.offset_z;
}
void mmc5603nj_read_origin_data(uint8_t *buffer) {
if (g_continuous_mode_enabled) {
// 连续模式下,只需检查数据是否就绪
uint8_t status = 0;
mmc5603nj_read_regs(MMC_STATUS1, &status, 1);
if ((status & 0x40) == 0) { // Meas_M_done bit
// 数据未就绪,可以选择返回或等待,这里我们直接返回旧数据
return;
}
} else {
// 单次测量模式
uint8_t status = 0;
uint8_t timeout = 20;
// 触发一次带自动SET/RESET的磁场测量
mmc5603nj_write_reg(MMC_INCTRL0, 0x21); // 0b00100001 (TAKE_MEAS_M=1, AUTO_SR_EN=1)
// 等待测量完成
do {
os_time_dly(10);
mmc5603nj_read_regs(MMC_STATUS1, &status, 1);
timeout--;
} while ((status & 0x40) == 0 && timeout > 0);
if (timeout == 0) {
printf("Error: Magnetic measurement timeout!\n");
return;
}
}
// 读取9个字节的原始数据
mmc5603nj_read_regs(MMC_XOUT0, buffer, 9);
}

View File

@ -36,6 +36,14 @@
#define MMC_ST_Z 0x29
#define MMC_PID 0x39
// 定义一个结构体来存放三轴磁场数据(原始数据)
typedef struct {
float x;
float y;
float z;
} mmc5603nj_original_data_t;
// 定义一个结构体来存放三轴磁场数据(单位:高斯 Gauss
typedef struct {
float x;

View File

@ -1167,10 +1167,19 @@ unsigned char Original_SL_SC7U22_Angle_Output(unsigned char calibration_en, sign
return 2; // 校准未完成,返回错误状态
}
unsigned char get_calibration_state(void){
unsigned char get_SC7U22_Error_Flag(void){
return SL_SC7U22_Error_Flag;
}
/**
* @brief 设置零漂检测标准位
*
* @param flag 0重新进行零漂检测
*/
void set_SC7U22_Error_Flag(char flag){
SL_SC7U22_Error_Flag = flag;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -1182,7 +1191,7 @@ unsigned char get_calibration_state(void){
// Kp: 比例增益,决定了加速度计数据校正陀螺仪的权重。值越大,对加速度计的响应越快,但对运动加速度更敏感。
// Ki: 积分增益,决定了用于校正陀螺仪静态漂移的权重。
// Q_dt: 采样时间间隔单位这里是10ms (0.01s)对应100Hz的采样率。
#define HAVE_MAG 1
#define HAVE_MAG 0
#if HAVE_MAG == 0
// -- 无地磁 --
const float Kp = 2.0f;
@ -1190,8 +1199,8 @@ const float Ki = 0.005f;
const float Q_dt = 0.01f;
#else
// -- 有地磁 --
const float Kp = 0.3f;
const float Ki = 0.001f;
const float Kp = 2.0f;
const float Ki = 0.005f;
const float Q_dt = 0.01f;
#endif
@ -1233,7 +1242,7 @@ float Temp_Mag[3] = {0.0f, 0.0f, 0.0f};
*/
unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, const mmc5603nj_mag_data_t* _mag_data_input, unsigned char yaw_rst, float *quaternion_output)
{
#if 1 //有地磁置1
#if 0 //有地磁置1
unsigned char sl_i = 0;
// 如果外部强制禁用校准则将标志位置1
if (calibration_en == 0) {
@ -1312,8 +1321,6 @@ unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed shor
// Error_Mag_f[0] = 0.0f - (float)Sum_Avg_Mag_f[0];
// Error_Mag_f[1] = 0.0f - (float)Sum_Avg_Mag_f[1];
// Error_Mag_f[2] = 0.0f - (float)Sum_Avg_Mag_f[2];
// xlog("AVG_Recode AX:%d,AY:%d,AZ:%d,GX:%d,GY:%d,GZ:%d\r\n", Sum_Avg_Accgyro[0], Sum_Avg_Accgyro[1], Sum_Avg_Accgyro[2], Sum_Avg_Accgyro[3], Sum_Avg_Accgyro[4], Sum_Avg_Accgyro[5]);
// xlog("Error_Recode AX:%d,AY:%d,AZ:%d,GX:%d,GY:%d,GZ:%d\r\n", Error_Accgyro[0], Error_Accgyro[1], Error_Accgyro[2], Error_Accgyro[3], Error_Accgyro[4], Error_Accgyro[5]);
}
} else {
SL_SC7U22_Error_cnt2 = 0;
@ -1497,6 +1504,8 @@ unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed shor
SL_SC7U22_Error_cnt2 = 0;
SL_SC7U22_Error_cnt = 0;
for (sl_i = 0; sl_i < 6; sl_i++) Sum_Avg_Accgyro[sl_i] = Sum_Avg_Accgyro[sl_i] / 50;
Error_Accgyro[0] = 0 - Sum_Avg_Accgyro[0];
Error_Accgyro[1] = 0 - Sum_Avg_Accgyro[1];
#if ACC_RANGE==2
@ -1511,6 +1520,8 @@ unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed shor
Error_Accgyro[3] = 0 - Sum_Avg_Accgyro[3];
Error_Accgyro[4] = 0 - Sum_Avg_Accgyro[4];
Error_Accgyro[5] = 0 - Sum_Avg_Accgyro[5];
// xlog("AVG_Recode AX:%d,AY:%d,AZ:%d,GX:%d,GY:%d,GZ:%d\r\n", Sum_Avg_Accgyro[0], Sum_Avg_Accgyro[1], Sum_Avg_Accgyro[2], Sum_Avg_Accgyro[3], Sum_Avg_Accgyro[4], Sum_Avg_Accgyro[5]);
// xlog("Error_Recode AX:%d,AY:%d,AZ:%d,GX:%d,GY:%d,GZ:%d\r\n", Error_Accgyro[0], Error_Accgyro[1], Error_Accgyro[2], Error_Accgyro[3], Error_Accgyro[4], Error_Accgyro[5]);
}
@ -1583,10 +1594,30 @@ unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed shor
eyInt = eyInt + ey * Ki * Q_dt;
ezInt = ezInt + ez * Ki * Q_dt;
float kp_dynamic = Kp; // 默认使用全局Kp
// // 计算重力向量与Z轴的夹角余弦值
// // 当设备接近水平时abs_az_component 接近 1
// // 当设备接近垂直时abs_az_component 接近 0
// float abs_az_component = fabsf(az);
// // 设置一个阈值比如当与水平面的夹角大于75度时 (cos(75) approx 0.26)
// // 就开始降低Kp
// if (abs_az_component < 0.26f) {
// // 线性降低Kp或者直接使用一个较小的值
// // 越接近垂直az越小Kp也越小
// kp_dynamic = Kp * (abs_az_component / 0.26f);
// }
// 使用PI控制器校正陀螺仪的测量值
gx = gx + Kp * ex + exInt;
gy = gy + Kp * ey + eyInt;
gz = gz + Kp * ez + ezInt;
gx += kp_dynamic * ex + exInt;
gy += kp_dynamic * ey + eyInt;
gz += kp_dynamic * ez + ezInt;
// gx = gx + Kp * ex + exInt;
// gy = gy + Kp * ey + eyInt;
// gz = gz + Kp * ez + ezInt;
}
// 使用校正后的角速度更新四元数 (一阶毕卡法)

View File

@ -20,12 +20,12 @@ Copyright (c) 2022 Silan MEMS. All Rights Reserved.
/***使用前请根据实际情况配置以下参数******/
/**SC7U22的SDO 接地: 0****************/
/**SC7U22的SDO 接电源:1****************/
#define SL_SC7U22_SDO_VDD_GND 1
#define SL_SC7U22_SDO_VDD_GND 0
/*****************************************/
/***使用前请根据实际IIC地址配置参数***/
/**SC7U22的IIC 接口地址为 7bits: 0****/
/**SC7U22的IIC 接口地址为 8bits: 1****/
#define SL_SC7U22_IIC_7BITS_8BITS 0
#define SL_SC7U22_IIC_7BITS_8BITS 1
/*****************************************/
#if SL_SC7U22_SDO_VDD_GND==0
#define SL_SC7U22_IIC_7BITS_ADDR 0x18
@ -131,6 +131,7 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en,signed short *
/**output Angle_output[2]: Yaw*******************************/
/**input yaw_rst: reset yaw value***************************/
void set_SC7U22_Error_Flag(char flag);
unsigned char Original_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
unsigned char SIX_SL_SC7U22_Angle_Output(unsigned char auto_calib_start, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, const mmc5603nj_mag_data_t *mag_data_input, unsigned char yaw_rst, float *quaternion_output);

View File

@ -1,5 +1,6 @@
#ifndef XTELL_H
#define XTELL_H
#include "system/includes.h"
// #define KS_BLE 1
#define XTELL_TEST 1

View File

@ -49,6 +49,7 @@
#include "./sensor/MMC56.h"
#include "./sensor/BMP280.h"
#include "./sensor/AK8963.h"
#include "./calculate/skiing_tracker.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
//宏定义
#define LOG_TAG_CONST EARPHONE
@ -84,13 +85,28 @@ unsigned char xtell_bl_state=0; //存放经典蓝牙的连接状态0断开
u8 bt_newname =0;
unsigned char xt_ble_new_name[9] = "CM-22222";
static u16 play_poweron_ok_timer_id = 0;
// -- 初始化标志位 --
u8 SC7U22_init = 0x10; //六轴是否初始化
u8 MMC5603nj_init = 0x20; //地磁是否初始化
u8 BMP280_init = 0x30; //气压计初始化
u8 foot_init = 0x40; //数据来源初始化左脚0x41 or 右脚0x42
// -- 线程id --
u16 gsensor_test_id = 0;
//
///////////////////////////////////////////////////////////////////////////////////////////////////
extern int bt_hci_event_handler(struct bt_event *bt);
extern void SC7U22_static_calibration(void);
extern void create_process(u16* pid, const char* name, void *priv, void (*func)(void *priv), u32 msec);
extern void close_process(u16* pid,char* name);
extern void start_collect_fuc(void);
extern void BLE_send_fuc(void);
extern void start_calibration(void);
extern void start_clloct(void);
extern void stop_clloct(void);
extern void set_foot_state(u8 state);
///////////////////////////////////////////////////////////////////////////////////////////////////
/*
* 模式状态机, 通过start_app()控制状态切换
@ -203,57 +219,97 @@ void le_user_app_event_handler(struct sys_event* event){
if(event->u.app.buffer[2] == 0x01){ //后面的数据长度 1
switch (event->u.app.buffer[3]){
case 0x01:
char* send_start = "will start after 5 seconds\n";
send_data_to_ble_client(send_start,strlen(send_start));
if (mmc5603nj_init() != 0) {
xlog("MMC5603NJ initialization failed!\n");
char* send_error = "calibration error\n";
send_data_to_ble_client(send_error,strlen(send_error));
extern void gsensor_test(void);
create_process(&gsensor_test_id,"gsensor_test",NULL,gsensor_test,1000);
break;
case 0xff: //测试
u8 device_buff[10];
u8 founds = 0;
extern void i2c_scanner_probe(u8* device_addr, u8* found_number);
i2c_scanner_probe(device_buff,&founds);
for(int i = 0;i < founds;i++){
send_data_to_ble_client(&device_buff,founds);
}
xlog("MMC5603NJ PID: 0x%02X\n", mmc5603nj_get_pid());
char* send_tmp = "8th calibration completed\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x02:
extern void create_process(u16* pid,char* name, void *priv, void (*func)(void *priv), u32 msec);
extern void sensor_measure(void);
static int test_id;
SL_SC7U22_Config();
create_process(&test_id, "test",NULL, sensor_measure, 10);
send_tmp = "start_detection\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x03:
extern void start_detection(void);
start_detection();
send_tmp = "start_detection\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x04:
extern void stop_detection(void);
stop_detection();
send_tmp = "stop_detection\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x05:
extern void clear_speed(void);
clear_speed();
send_tmp = "Reset speed and distances to zero\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
default:
break;
}
}else if(event->u.app.buffer[2] == 0x02){ //后面数据长度为2
switch (event->u.app.buffer[3]){ //数据包类型
case 0x00: //数据包类型为:指定传感器初始化
u8 send2_0[5] = {0xBB,0xBE,0x02,0x00,0x00};
if(event->u.app.buffer[4] == 0x01){ //六轴
if (SL_SC7U22_Config() == 0) {
send2_0[4] = 0x00; //初始化失败
SC7U22_init = 0x10;
send_data_to_ble_client(&send2_0,5);
return;
}
start_calibration();
}else if(event->u.app.buffer[4] == 0x02){ //地磁
if(mmc5603nj_init() == 0){
MMC5603nj_init = 0x20;
send2_0[4] = MMC5603nj_init; //地磁初始化失败
send_data_to_ble_client(&send2_0,5);
return;
}
MMC5603nj_init = 0x21;
send2_0[4] = MMC5603nj_init; //地磁初始化成功
send_data_to_ble_client(&send2_0,5);
}else if(event->u.app.buffer[4] == 0x03){ //气压计初始化
if(bmp280_init() != 0){
//初始化失败
BMP280_init = 0x30;
send2_0[4] = BMP280_init;
send_data_to_ble_client(&send2_0,5);
return;
}
BMP280_init = 0x31;
send2_0[4] = BMP280_init; //气压计初始化成功
send_data_to_ble_client(&send2_0,5);
}
break;
case 0x01: //设置传感器采集对象左脚or右脚
u8 send2_1[9] = {0xBB,0xBE,0x06,0x05,0x00,0x00,0x00,0x00,0x00};
if(event->u.app.buffer[4] == 0x01){ //设定数据来源是左脚
foot_init = 0x41;
}else if(event->u.app.buffer[4] == 0x02){//设定数据来源是右脚
foot_init = 0x42;
}
send2_1[4] = foot_init;
send_data_to_ble_client(&send2_1,9);
break;
case 0x02: //数据包类型为:获取指定传感器初始化状态
u8 send2_2[5] = {0xBB,0xBE,0x02,0x00,0x00};
if(event->u.app.buffer[4] == 0x01){ //六轴
send2_2[4] = SC7U22_init;
}else if(event->u.app.buffer[4] == 0x02){ //地磁
send2_2[4] = MMC5603nj_init;
}else if(event->u.app.buffer[4] == 0x03){ //气压计
send2_2[4] = BMP280_init;
}
send_data_to_ble_client(&send2_2,5);
break;
case 0x03: //开始/停止滑雪计算
if(event->u.app.buffer[4] == 0x01){ //开始滑雪计算
if(SC7U22_init == 0x10 || MMC5603nj_init == 0x20 || BMP280_init == 0x30){ //传感器未进行初始化
u8 send2_3[5] = {0xBB,0xBE,0x02,0x00,0x00};
send_data_to_ble_client(&send2_3,5);
return;
}
start_clloct();
}else if(event->u.app.buffer[4] == 0x02){ //停止滑雪计算
stop_clloct();
}
break;
}
}
}
break;
break;
default:
xlog("%d\n",event->type);
break;
xlog("%d\n",event->type);
break;
}

View File

@ -253,6 +253,7 @@
_MASK_MEM_BEGIN = ABSOLUTE(0x19fc00);
_MASK_MEM_SIZE = ABSOLUTE(0x1a4);
EXTERN(
_start
@ -274,25 +275,14 @@ cvsd_decoder
pcm_decoder
mp3_decoder
wtgv2_decoder
aac_decoder
cvsd_encoder
msbc_encoder
audio_dac_driver
);
UPDATA_SIZE = 0x80;
@ -428,7 +418,8 @@ SECTIONS
battery_notify_begin = .;
*(.battery_notify)
battery_notify_end = .;
. = ALIGN(4);
. = ALIGN(4);
__VERSION_BEGIN = .;
KEEP(*(.sys.version))
__VERSION_END = .;
@ -518,6 +509,7 @@ SECTIONS
*(.audio_track_data)
*(.audio_adc_data)
. = ALIGN(4);
*(.data*)
@ -726,6 +718,7 @@ SECTIONS
} > ram0
data_code_pc_limit_end = .;
__report_overlay_end = .;
@ -815,6 +808,7 @@ SECTIONS
}
SECTIONS
{
.data : ALIGN(4)
@ -846,6 +840,7 @@ SECTIONS
UPDATE_CODE_TOTAL_SIZE = update_code_end - update_code_start;
}
SECTIONS
{
.data : ALIGN(4)
@ -948,6 +943,7 @@ BTSTACK_LE_HOST_MESH_RAM_TOTAL = BTSTACK_LE_HOST_MESH_DATA_SIZE + BTSTACK_LE_HOS
BTSTACK_LE_HOST_MESH_FLASH_TOTAL = BTSTACK_LE_HOST_MESH_CODE_SIZE;
BTSTACK_CODE_SIZE = (btstack_code_end - btstack_code_start) + (btstack_data_end - btstack_data_start);
SECTIONS
{
.data : ALIGN(4)
@ -1241,6 +1237,7 @@ SECTIONS
*(.os_code)
} > ram0
}
SECTIONS
{
.data : ALIGN(4)
@ -1450,6 +1447,7 @@ SECTIONS
BTCTLER_RAM_TOTAL = (btctler_data_end - btctler_data_start) + (btctler_bss_end - btctler_bss_start);
BTCTLER_CODE_TOTAL = (btctler_code_end - btctler_code_start);
}
SECTIONS
{
.data : ALIGN(4)
@ -1567,7 +1565,8 @@ SECTIONS
*(.timer.text.cache.L1)
*(.gpio.text.cache.L1)
*(.iic_hw.text.cache.L1)
driver_data_code_end = .;
driver_data_code_end = .;
. = ALIGN(4);
} > ram0
@ -1577,6 +1576,7 @@ SECTIONS
DRIVER_DATA_CODE_TOTAL = (driver_data_code_end - driver_data_code_start);
}
SECTIONS
{
.data : ALIGN(4)
@ -2016,6 +2016,7 @@ SECTIONS
} > ram0
}
text_begin = ADDR(.text);
text_size = SIZEOF(.text);
text_end = text_begin + text_size;

View File

@ -1,54 +0,0 @@
sdfile_vfs_ops
sbc_decoder
msbc_decoder
sbc_hwaccel
cvsd_decoder
pcm_decoder
mp3_decoder
wtgv2_decoder
aac_decoder
cvsd_encoder
msbc_encoder
audio_dac_driver

View File

View File

View File

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1 +0,0 @@
64F3350FE2590FAF79755623B7E159CE83FAD97C34014E5EB2B528F6D6C2DABAB3B7C88C

View File

@ -1 +0,0 @@
1cfdc466ec927dbedd4d12447b6bbff1da1bd6ddb6b375ecda1bd6ddb6b375ec950b1206

View File

@ -1 +0,0 @@
39209e0c95b837ce6cd626f6b1d566a6a5fed6fa11cd451ba5fed6fa11cd451b9a3f2514

View File

@ -1,49 +0,0 @@
@echo off
cd %~dp0
copy ..\..\script.ver .
copy ..\..\tone.cfg .
copy ..\..\p11_code.bin .
copy ..\..\br28loader.bin .
copy ..\..\ota.bin .
copy ..\..\anc_coeff.bin .
copy ..\..\anc_gains.bin .
..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br28 -boot 0x120000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin -res ..\..\cfg_tool.bin tone.cfg p11_code.bin ..\..\eq_cfg_hw.bin -uboot_compress -key AC69.key -format all -key 646-AC690X-7603.key
@REM..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br34 -boot 0x20000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin ..\..\cfg_tool.bin -res tone.cfg kws_command.bin p11_code.bin -uboot_compress
:: -format all
::-reboot 2500
@rem ɾ<><C9BE><EFBFBD><EFBFBD>ʱ<EFBFBD>ļ<EFBFBD>-format all
if exist *.mp3 del *.mp3
if exist *.PIX del *.PIX
if exist *.TAB del *.TAB
if exist *.res del *.res
if exist *.sty del *.sty
..\..\ufw_maker.exe -fw_to_ufw jl_isd.fw
copy jl_isd.ufw update.ufw
del jl_isd.ufw
@REM <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD>
::ufw_maker.exe -chip AC800X %ADD_KEY% -output config.ufw -res bt_cfg.cfg
::IF EXIST jl_696x.bin del jl_696x.bin
if exist script.ver del script.ver
if exist tone.cfg del tone.cfg
if exist p11_code.bin del p11_code.bin
if exist br28loader.bin del br28loader.bin
if exist anc_coeff.bin del anc_coeff.bin
if exist anc_gains.bin del anc_gains.bin
@rem <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5>
@rem -format vm //<2F><><EFBFBD><EFBFBD>VM <20><><EFBFBD><EFBFBD>
@rem -format cfg //<2F><><EFBFBD><EFBFBD>BT CFG <20><><EFBFBD><EFBFBD>
@rem -format 0x3f0-2 //<2F><>ʾ<EFBFBD>ӵ<EFBFBD> 0x3f0 <20><> sector <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 2 <20><> sector(<28><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ16<31><36><EFBFBD>ƻ<EFBFBD>10<31><30><EFBFBD>ƶ<EFBFBD><C6B6>ɣ<EFBFBD><C9A3>ڶ<EFBFBD><DAB6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>10<31><30><EFBFBD><EFBFBD>)
ping /n 2 127.1>null
IF EXIST null del null

View File

@ -1,49 +0,0 @@
@echo off
cd %~dp0
copy ..\..\script.ver .
copy ..\..\tone.cfg .
copy ..\..\p11_code.bin .
copy ..\..\br28loader.bin .
copy ..\..\ota.bin .
copy ..\..\anc_coeff.bin .
copy ..\..\anc_gains.bin .
..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br28 -boot 0x120000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin -res ..\..\cfg_tool.bin tone.cfg p11_code.bin ..\..\eq_cfg_hw.bin -uboot_compress -key 646-AC690X-7603.key
@REM..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br34 -boot 0x20000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin ..\..\cfg_tool.bin -res tone.cfg kws_command.bin p11_code.bin -uboot_compress
:: -format all
::-reboot 2500
@rem ɾ<><C9BE><EFBFBD><EFBFBD>ʱ<EFBFBD>ļ<EFBFBD>-format all
if exist *.mp3 del *.mp3
if exist *.PIX del *.PIX
if exist *.TAB del *.TAB
if exist *.res del *.res
if exist *.sty del *.sty
..\..\ufw_maker.exe -fw_to_ufw jl_isd.fw
copy jl_isd.ufw update.ufw
del jl_isd.ufw
@REM <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD>
::ufw_maker.exe -chip AC800X %ADD_KEY% -output config.ufw -res bt_cfg.cfg
::IF EXIST jl_696x.bin del jl_696x.bin
if exist script.ver del script.ver
if exist tone.cfg del tone.cfg
if exist p11_code.bin del p11_code.bin
if exist br28loader.bin del br28loader.bin
if exist anc_coeff.bin del anc_coeff.bin
if exist anc_gains.bin del anc_gains.bin
@rem <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5>
@rem -format vm //<2F><><EFBFBD><EFBFBD>VM <20><><EFBFBD><EFBFBD>
@rem -format cfg //<2F><><EFBFBD><EFBFBD>BT CFG <20><><EFBFBD><EFBFBD>
@rem -format 0x3f0-2 //<2F><>ʾ<EFBFBD>ӵ<EFBFBD> 0x3f0 <20><> sector <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 2 <20><> sector(<28><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ16<31><36><EFBFBD>ƻ<EFBFBD>10<31><30><EFBFBD>ƶ<EFBFBD><C6B6>ɣ<EFBFBD><C9A3>ڶ<EFBFBD><DAB6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>10<31><30><EFBFBD><EFBFBD>)
ping /n 2 127.1>null
IF EXIST null del null

View File

@ -1,49 +0,0 @@
@echo off
cd %~dp0
copy ..\..\script.ver .
copy ..\..\tone.cfg .
copy ..\..\p11_code.bin .
copy ..\..\br28loader.bin .
copy ..\..\ota.bin .
copy ..\..\anc_coeff.bin .
copy ..\..\anc_gains.bin .
:: -format all -key AC690X-8029.key
..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br28 -boot 0x120000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin -res ..\..\cfg_tool.bin tone.cfg p11_code.bin ..\..\eq_cfg_hw.bin -uboot_compress
@REM..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br34 -boot 0x20000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin ..\..\cfg_tool.bin -res tone.cfg kws_command.bin p11_code.bin -uboot_compress
:: -format all
::-reboot 2500
@rem ɾ ʱ ļ -format all
if exist *.mp3 del *.mp3
if exist *.PIX del *.PIX
if exist *.TAB del *.TAB
if exist *.res del *.res
if exist *.sty del *.sty
..\..\ufw_maker.exe -fw_to_ufw jl_isd.fw
copy jl_isd.ufw update.ufw
del jl_isd.ufw
@REM ļ ļ
::ufw_maker.exe -chip AC800X %ADD_KEY% -output config.ufw -res bt_cfg.cfg
::IF EXIST jl_696x.bin del jl_696x.bin
if exist script.ver del script.ver
if exist tone.cfg del tone.cfg
if exist p11_code.bin del p11_code.bin
if exist br28loader.bin del br28loader.bin
if exist anc_coeff.bin del anc_coeff.bin
if exist anc_gains.bin del anc_gains.bin
@rem ˵
@rem -format vm // VM
@rem -format cfg // BT CFG
@rem -format 0x3f0-2 // ʾ ӵ 0x3f0 sector ʼ 2 sector( һ Ϊ16 ƻ 10 ƶ ɣ ڶ 10 )
ping /n 2 127.1>null
IF EXIST null del null

View File

@ -1,50 +0,0 @@
@echo off
cd %~dp0
copy ..\..\script.ver .
copy ..\..\tone.cfg .
copy ..\..\p11_code.bin .
copy ..\..\br28loader.bin .
copy ..\..\ota.bin .
copy ..\..\anc_coeff.bin .
copy ..\..\anc_gains.bin .
:: -format all -key AC690X-8029.key
..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br28 -boot 0x120000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin -res ..\..\cfg_tool.bin tone.cfg p11_code.bin ..\..\eq_cfg_hw.bin -uboot_compress -key AC690X-8029.key
@REM..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br34 -boot 0x20000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin ..\..\cfg_tool.bin -res tone.cfg kws_command.bin p11_code.bin -uboot_compress
:: -format all
::-reboot 2500
@rem ɾ ʱ ļ -format all
if exist *.mp3 del *.mp3
if exist *.PIX del *.PIX
if exist *.TAB del *.TAB
if exist *.res del *.res
if exist *.sty del *.sty
..\..\ufw_maker.exe -fw_to_ufw jl_isd.fw
copy jl_isd.ufw update.ufw
del jl_isd.ufw
@REM ļ ļ
::ufw_maker.exe -chip AC800X %ADD_KEY% -output config.ufw -res bt_cfg.cfg
::IF EXIST jl_696x.bin del jl_696x.bin
if exist script.ver del script.ver
if exist tone.cfg del tone.cfg
if exist p11_code.bin del p11_code.bin
if exist br28loader.bin del br28loader.bin
if exist anc_coeff.bin del anc_coeff.bin
if exist anc_gains.bin del anc_gains.bin
@rem ˵
@rem -format vm // VM
@rem -format cfg // BT CFG
@rem -format 0x3f0-2 // ʾ ӵ 0x3f0 sector ʼ 2 sector( һ Ϊ16 ƻ 10 ƶ ɣ ڶ 10 )
ping /n 2 127.1>null
IF EXIST null del null

View File

@ -1,47 +0,0 @@
@echo off
cd %~dp0
copy ..\..\script.ver .
copy ..\..\tone.cfg .
copy ..\..\p11_code.bin .
copy ..\..\br28loader.bin .
..\..\isd_download.exe ..\..\isd_config.ini -tonorflash -dev br28 -boot 0x120000 -div8 -wait 300 -uboot ..\..\uboot.boot -app ..\..\app.bin -res tone.cfg ..\..\cfg_tool.bin ..\..\eq_cfg_hw.bin p11_code.bin -uboot_compress
:: -format all
::-reboot 2500
@rem ɾ<><C9BE><EFBFBD><EFBFBD>ʱ<EFBFBD>ļ<EFBFBD>-format all
if exist *.mp3 del *.mp3
if exist *.PIX del *.PIX
if exist *.TAB del *.TAB
if exist *.res del *.res
if exist *.sty del *.sty
@rem <20><><EFBFBD>ɹ̼<C9B9><CCBC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD>
..\..\fw_add.exe -noenc -fw jl_isd.fw -add ..\..\ota.bin -type 100 -out jl_isd.fw
@rem <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ýű<C3BD><C5B1>İ汾<C4B0><E6B1BE>Ϣ<EFBFBD><CFA2> FW <20>ļ<EFBFBD><C4BC><EFBFBD>
..\..\fw_add.exe -noenc -fw jl_isd.fw -add script.ver -out jl_isd.fw
..\..\ufw_maker.exe -fw_to_ufw jl_isd.fw
copy jl_isd.ufw update.ufw
del jl_isd.ufw
@REM <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ļ<EFBFBD>
::ufw_maker.exe -chip AC800X %ADD_KEY% -output config.ufw -res bt_cfg.cfg
::IF EXIST jl_696x.bin del jl_696x.bin
if exist script.ver del script.ver
if exist tone.cfg del tone.cfg
if exist p11_code.bin del p11_code.bin
if exist br28loader.bin del br28loader.bin
@rem <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><CBB5>
@rem -format vm //<2F><><EFBFBD><EFBFBD>VM <20><><EFBFBD><EFBFBD>
@rem -format cfg //<2F><><EFBFBD><EFBFBD>BT CFG <20><><EFBFBD><EFBFBD>
@rem -format 0x3f0-2 //<2F><>ʾ<EFBFBD>ӵ<EFBFBD> 0x3f0 <20><> sector <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 2 <20><> sector(<28><>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ16<31><36><EFBFBD>ƻ<EFBFBD>10<31><30><EFBFBD>ƶ<EFBFBD><C6B6>ɣ<EFBFBD><C9A3>ڶ<EFBFBD><DAB6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>10<31><30><EFBFBD><EFBFBD>)
ping /n 2 127.1>null
IF EXIST null del null

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,82 +0,0 @@
[EXTRA_CFG_PARAM]
NEW_FLASH_FS = YES;
CHIP_NAME = AC701N;
ENTRY = 0x6000100;
PID = AC701N;
VID = 0.01;
SDK_VERSION = JL701N_V1.6.1;
RESERVED_OPT = 0;
UFW_ELEMENT = 0x10 - 0x0, 0x1 - 0x0;
DOWNLOAD_MODEL = USB;
SERIAL_DEVICE_NAME = JlVirtualJtagSerial;
SERIAL_BARD_RATE = 1000000;
SERIAL_CMD_OPT = 2;
SERIAL_CMD_RATE = 100;
SERIAL_CMD_RES = 0;
SERIAL_INIT_BAUD_RATE = 9600;
LOADER_BAUD_RATE = 1000000;
LOADER_ASK_BAUD_RATE = 1000000;
BEFORE_LOADER_WAIT_TIME = 150;
SERIAL_SEND_KEY = YES;
[CHIP_VERSION]
SUPPORTED_LIST = P, B;
[SYS_CFG_PARAM]
SPI = 2_3_0_0;
UTTX = PB02;
UTBD = 1000000;
UTRX = PP00;
[FW_ADDITIONAL]
FILE_LIST = (file = ota.bin: type = 100);
[RESERVED_CONFIG]
BTIF_ADR = AUTO;
BTIF_LEN = 0x1000;
BTIF_OPT = 1;
PRCT_ADR = 0;
PRCT_LEN = CODE_LEN;
PRCT_OPT = 2;
VM_ADR = 0;
VM_LEN = 8K;
VM_OPT = 1;
[BURNER_CONFIG]
SIZE = 32;

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -13,7 +13,7 @@ struct sys_time {
u8 sec;
};
#if 0
#if 1
struct tm {
int tm_sec; /* Seconds. [0-60] (1 leap second) */
int tm_min; /* Minutes. [0-59] */

Some files were not shown because too many files have changed in this diff Show More