地磁8面校准完成

This commit is contained in:
lmx
2025-11-20 19:30:34 +08:00
parent 2bfdc81991
commit 9ccf1acda8
17 changed files with 1475 additions and 603 deletions

View File

@ -252,6 +252,7 @@ INCLUDES := \
-Iapps/earphone/xtell_Sensor/ano \
-Iapps/earphone/xtell_Sensor/sensor/ \
-Iapps/earphone/xtell_Sensor/sensor/ \
-Iapps/earphone/xtell_Sensor/sensor/ \
-I$(SYS_INC_DIR) \
@ -626,6 +627,7 @@ c_SRC_FILES := \
apps/earphone/xtell_Sensor/ano/ano_protocol.c \
apps/earphone/xtell_Sensor/sensor/MMC56.c \
apps/earphone/xtell_Sensor/sensor/BMP280.c \
apps/earphone/xtell_Sensor/sensor/AK8963.c \
# 需要编译的 .S 文件

View File

@ -314,7 +314,7 @@ u8 _gravity_sensor_get_ndata(u8 r_chip_id, u8 register_address, u8 *buf, u8 data
iic_start(gSensor_info->iic_hdl);
if (0 == iic_tx_byte(gSensor_info->iic_hdl, r_chip_id - 1)) {
xlog("\n gsen iic rd err 0\n");
xlog("I2C NACK on writing ADDR: 0x%X\n", r_chip_id - 1);
read_len = 0;
strcpy(&sen_log_buffer_1, "gsen iic rd err 0\n");
goto __gdend;
@ -323,7 +323,8 @@ u8 _gravity_sensor_get_ndata(u8 r_chip_id, u8 register_address, u8 *buf, u8 data
delay(gSensor_info->iic_delay);
if (0 == iic_tx_byte(gSensor_info->iic_hdl, register_address)) {
xlog("\n gsen iic rd err 1\n");
xlog("I2C NACK on register ADDR: 0x%X\n", register_address);
// xlog("\n gsen iic rd err 1\n");
read_len = 0;
strcpy(&sen_log_buffer_2, "gsen iic rd err 1\n");
goto __gdend;

View File

@ -526,7 +526,7 @@ const struct hw_iic_config hw_iic_cfg[] = {
.baudrate = TCFG_HW_I2C0_CLK, //IIC通讯波特率
.hdrive = 0, //是否打开IO口强驱
.io_filter = 1, //是否打开滤波器(去纹波)
.io_pu = 1, //是否打开上拉电阻如果外部电路没有焊接上拉电阻需要置1
.io_pu = 0, //是否打开上拉电阻如果外部电路没有焊接上拉电阻需要置1
},
};

View File

@ -0,0 +1,651 @@
/*
*/
#include "skiing_tracker.h"
#include "../sensor/SC7U22.h"
#include <math.h>
#include <string.h>
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
#define ENABLE_XLOG 1
#ifdef xlog
#undef xlog
#endif
#if ENABLE_XLOG
#define xlog(format, ...) printf("[XT:%s] " format, __func__, ##__VA_ARGS__)
#else
#define xlog(format, ...) ((void)0)
#endif
// --- 静止检测 ---
//两个判断是否静止的必要条件:动态零速更新(ZUPT)阈值
// 加速方差阈值,提高阈值,让“刹车”更灵敏,以便在波浪式前进等慢速漂移时也能触发零速更新
#define STOP_ACC_VARIANCE_THRESHOLD 0.2f
// 陀螺仪方差阈值
#define STOP_GYR_VARIANCE_THRESHOLD 5.0f
// 静止时候的陀螺仪模长
#define STOP_GYR_MAG_THRESHOLD 15
// --- --- ---
// --- 启动滑雪阈值 ---
// 加速度模长与重力的差值大于此值,认为开始运动;降低阈值,让“油门”更灵敏,以便能捕捉到真实的慢速启动
#define START_ACC_MAG_THRESHOLD 1.0f //0.5、1
// 陀螺仪方差阈值,以允许启动瞬间的正常抖动,但仍能过滤掉混乱的、非滑雪的晃动。
#define START_GYR_VARIANCE_THRESHOLD 15.0f
// --- --- ---
// --- 滑雪过程 ---
//加速度 模长(不含重力),低于此值视为 在做匀速运动
#define SKIING_ACC_MAG_THRESHOLD 0.5f
//陀螺仪 模长,高于此值视为 摔倒了
#define FALLEN_GRY_MAG_THRESHOLD 2000.0f //未确定
// --- --- ---
// --- 原地旋转抖动 ---
// 加速度 方差 阈值。此值比 静止检测 阈值更宽松,
#define WOBBLE_ACC_VARIANCE_THRESHOLD 0.5f
// 加速度 模长 阈值
#define WOBBLE_ACC_MAG_THRESHOLD 1.0f
// 角速度 总模长 大于此值(度/秒),认为正在进行非滑雪的旋转或摆动
#define ROTATION_GYR_MAG_THRESHOLD 30.0f
// --- --- ---
// --- 滑雪转弯动 ---
// 加速度 方差 阈值,大于此值,滑雪过程可能发生了急转弯
#define WHEEL_ACC_VARIANCE_THRESHOLD 7.0f
// 角速度 总模长 大于此值(度/秒),认为滑雪过程中进行急转弯
#define WHEEL_GYR_MAG_THRESHOLD 500.0f //
// --- --- ---
// --- 跳跃 ---
// 加速度模长低于此值(g),认为进入失重状态(IN_AIR)
#define AIRBORNE_ACC_MAG_LOW_THRESHOLD 0.4f
// 加速度模长高于此值(g),认为发生落地冲击(LANDING)
#define LANDING_ACC_MAG_HIGH_THRESHOLD 3.5f
// 起跳加速度阈值(g)用于进入TAKING_OFF状态
#define TAKEOFF_ACC_MAG_HIGH_THRESHOLD 1.8f
// 进入空中状态确认计数需要连续3个采样点加速度低于阈值才判断为起跳
#define AIRBORNE_CONFIRM_COUNT 3
// 落地状态确认计数加速度恢复到1g附近并持续2个采样点(20ms)则认为已落地
#define GROUNDED_CONFIRM_COUNT 2
// 最大滞空时间(秒),超过此时间强制认为已落地,防止状态锁死
#define MAX_TIME_IN_AIR 12.5f
// --- --- ---
// --- 用于消除积分漂移的滤波器和阈值 ---
// 高通滤波器系数 (alpha)。alpha 越接近1滤除低频(直流偏移)的效果越强,但可能滤掉真实的慢速运动。
// alpha = RC / (RC + dt)参考RC电路而来fc ≈ (1 - alpha) / (2 * π * dt)
#define HPF_ALPHA 0.999f
//0.995f 0.08 Hz 的信号
//0.999f 0.0159 Hz
// --- --- ---
// --- 低通滤波器 ---
// 低通滤波器系数 (alpha)。alpha 越小,滤波效果越强(更平滑),但延迟越大。
// alpha 推荐范围 0.7 ~ 0.95。可以从 0.85 开始尝试。
#define LPF_ALPHA 0.7f
// 加速度死区阈值 (m/s^2)。低于此阈值的加速度被认为是噪声,不参与积分。
// 设得太高会忽略真实的慢速启动,设得太低则无法有效抑制噪声。
//参考0.2f ~ 0.4f
#define ACC_DEAD_ZONE_THRESHOLD 0.05f
// --- 模拟摩擦力,进行速度衰减 ---
#define SPEED_ATTENUATION 1.0f //暂不模拟
BLE_KS_send_data_t KS_data;
static float quaternion_data[4];
#ifdef XTELL_TEST
debug_t debug1;
debug_t debug2;
#endif
static skiing_tracker_t my_skiing_tracker;
//////////////////////////////////////////////////////////////////////////////////////////////////
//实现
void clear_speed(void){
my_skiing_tracker.state = STATIC;
memset(my_skiing_tracker.velocity, 0, sizeof(my_skiing_tracker.velocity));
my_skiing_tracker.speed = 0;
}
void start_detection(void){
my_skiing_tracker.state = STATIC;
memset(my_skiing_tracker.velocity, 0, sizeof(my_skiing_tracker.velocity));
my_skiing_tracker.distance = 0;
my_skiing_tracker.speed = 0;
}
void stop_detection(void){
my_skiing_tracker.state = STOP_DETECTION;
memset(my_skiing_tracker.velocity, 0, sizeof(my_skiing_tracker.velocity));
my_skiing_tracker.speed = 0;
}
/**
* @brief 初始化滑雪追踪器
*
* @param tracker
*/
void skiing_tracker_init(skiing_tracker_t *tracker)
{
if (!tracker) {
return;
}
// 使用memset一次性清零整个结构体包括新增的缓冲区
memset(tracker, 0, sizeof(skiing_tracker_t));
tracker->state = STATIC;
}
/**
* @brief 当检测到落地时,计算空中的水平飞行距离并累加到总距离
*/
static void calculate_air_distance(skiing_tracker_t *tracker) {
float horizontal_speed_on_takeoff = sqrtf(
tracker->initial_velocity_on_takeoff[0] * tracker->initial_velocity_on_takeoff[0] +
tracker->initial_velocity_on_takeoff[1] * tracker->initial_velocity_on_takeoff[1]
);
float distance_in_air = horizontal_speed_on_takeoff * tracker->time_in_air;
tracker->distance += distance_in_air;
}
/**
* @brief 使用四元数直接从设备坐标系的加速度中移除重力分量
* @details 这种方法比使用欧拉角更精确、更稳定,且避免了万向节死锁。
* @param acc_device 输入:设备坐标系下的原始加速度 [x, y, z], 单位 m/s^2
* @param q 输入:表示姿态的四元数 [w, x, y, z]
* @param acc_linear_device 输出:设备坐标系下移除重力后的线性加速度 [x, y, z]
*/
void q_remove_gravity_with_quaternion(const float *acc_device, const float *q, float *acc_linear_device)
{
// 从四元数计算重力在设备坐标系下的投影
// G_device = R_transpose * G_world
// G_world = [0, 0, g]
// R_transpose 的第三列即为重力投影方向
float gx = 2.0f * (q[1] * q[3] - q[0] * q[2]);
float gy = 2.0f * (q[0] * q[1] + q[2] * q[3]);
float gz = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
// 从原始加速度中减去重力分量
acc_linear_device[0] = acc_device[0] - gx * G_ACCELERATION;
acc_linear_device[1] = acc_device[1] - gy * G_ACCELERATION;
acc_linear_device[2] = acc_device[2] - gz * G_ACCELERATION;
}
/**
* @brief 使用四元数将设备坐标系的线性加速度转换到世界坐标系
* @details 同样,此方法比使用欧拉角更优。
* @param acc_linear_device 输入:设备坐标系下的线性加速度 [x, y, z]
* @param q 输入:表示姿态的四元数 [w, x, y, z]
* @param acc_linear_world 输出:世界坐标系下的线性加速度 [x, y, z]
*/
void q_transform_to_world_with_quaternion(const float *acc_linear_device, const float *q, float *acc_linear_world)
{
// 这是 R_device_to_world * acc_linear_device 的展开形式
acc_linear_world[0] = (1.0f - 2.0f*q[2]*q[2] - 2.0f*q[3]*q[3]) * acc_linear_device[0] +
(2.0f*q[1]*q[2] - 2.0f*q[0]*q[3]) * acc_linear_device[1] +
(2.0f*q[1]*q[3] + 2.0f*q[0]*q[2]) * acc_linear_device[2];
acc_linear_world[1] = (2.0f*q[1]*q[2] + 2.0f*q[0]*q[3]) * acc_linear_device[0] +
(1.0f - 2.0f*q[1]*q[1] - 2.0f*q[3]*q[3]) * acc_linear_device[1] +
(2.0f*q[2]*q[3] - 2.0f*q[0]*q[1]) * acc_linear_device[2];
acc_linear_world[2] = (2.0f*q[1]*q[3] - 2.0f*q[0]*q[2]) * acc_linear_device[0] +
(2.0f*q[2]*q[3] + 2.0f*q[0]*q[1]) * acc_linear_device[1] +
(1.0f - 2.0f*q[1]*q[1] - 2.0f*q[2]*q[2]) * acc_linear_device[2];
// acc_linear_world[2] -= G_ACCELERATION;
}
/**
* @brief 计算缓冲区内三轴数据的方差之和
*
* @param buffer 传进来的三轴数据:陀螺仪/加速度
* @return float 返回方差和
*/
static float calculate_variance(float buffer[VARIANCE_BUFFER_SIZE][3])
{
float mean[3] = {0};
float variance[3] = {0};
// 计算均值
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
mean[0] += buffer[i][0];
mean[1] += buffer[i][1];
mean[2] += buffer[i][2];
}
mean[0] /= VARIANCE_BUFFER_SIZE;
mean[1] /= VARIANCE_BUFFER_SIZE;
mean[2] /= VARIANCE_BUFFER_SIZE;
// 计算方差
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
variance[0] += (buffer[i][0] - mean[0]) * (buffer[i][0] - mean[0]);
variance[1] += (buffer[i][1] - mean[1]) * (buffer[i][1] - mean[1]);
variance[2] += (buffer[i][2] - mean[2]) * (buffer[i][2] - mean[2]);
}
variance[0] /= VARIANCE_BUFFER_SIZE;
variance[1] /= VARIANCE_BUFFER_SIZE;
variance[2] /= VARIANCE_BUFFER_SIZE;
// 返回三轴方差之和,作为一个综合的稳定度指标
return variance[0] + variance[1] + variance[2];
}
/**
* @brief 摩擦力模拟,进行速度衰减
*
* @param tracker
*/
void forece_of_friction(skiing_tracker_t *tracker){
// 增加速度衰减,模拟摩擦力
tracker->velocity[0] *= SPEED_ATTENUATION;
tracker->velocity[1] *= SPEED_ATTENUATION;
tracker->velocity[2] = 0; // 垂直速度强制归零
}
/**
* @brief 状态机更新
*
* @param tracker 传入同步修改后传出
* @param acc_device_ms2 三轴加速度m/s^2
* @param gyr_dps 三轴陀螺仪dps
*/
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device_ms2, const float *gyr_dps)
{
// 缓冲区未填满时,不进行状态判断,默认为静止
if (!tracker->buffer_filled) {
tracker->state = STATIC;
return;
}
// --- 计算关键指标 ---
float acc_variance = calculate_variance(tracker->acc_buffer); // 计算加速度方差
float gyr_variance = calculate_variance(tracker->gyr_buffer); // 计算陀螺仪方差
float gyr_magnitude = sqrtf(gyr_dps[0]*gyr_dps[0] + gyr_dps[1]*gyr_dps[1] + gyr_dps[2]*gyr_dps[2]); //dps
float acc_magnitude = sqrtf(acc_device_ms2[0]*acc_device_ms2[0] + acc_device_ms2[1]*acc_device_ms2[1] + acc_device_ms2[2]*acc_device_ms2[2]); //m/s^s
float acc_magnitude_g = acc_magnitude / G_ACCELERATION; // 转换为g单位用于跳跃判断
#ifdef XTELL_TEST
debug1.acc_variance =acc_variance;
debug1.gyr_variance =gyr_variance;
debug1.gyr_magnitude=gyr_magnitude;
debug1.acc_magnitude=fabsf(acc_magnitude - G_ACCELERATION);
#endif
// --- 状态机逻辑 (核心修改区域) ---
#if 0 //暂时不考虑空中
// 1. 空中/落地状态的后续处理
if (tracker->state == IN_AIR) {
// A. 检测巨大冲击 -> 落地
if (acc_magnitude_g > LANDING_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = LANDING;
// B. 检测超时 -> 强制落地 (安全机制)
} else if (tracker->time_in_air > MAX_TIME_IN_AIR) {
tracker->state = LANDING;
// C. 检测恢复正常重力 (平缓落地)
} else if (acc_magnitude_g > 0.8f && acc_magnitude_g < 1.5f) {
tracker->grounded_entry_counter++;
if (tracker->grounded_entry_counter >= GROUNDED_CONFIRM_COUNT) {
tracker->state = LANDING;
}
} else {
tracker->grounded_entry_counter = 0;
}
return; // 在空中或刚切换到落地,结束本次状态判断
}
// 2. 严格的 "起跳->空中" 状态转换逻辑
// 只有当处于滑行状态时,才去检测起跳意图
if (tracker->state == NO_CONSTANT_SPEED || tracker->state == CONSTANT_SPEED || tracker->state == WHEEL) {
if (acc_magnitude_g > TAKEOFF_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = TAKING_OFF;
tracker->airborne_entry_counter = 0; // 准备检测失重
return;
}
}
// 只有在TAKING_OFF状态下才去检测是否进入失重
if (tracker->state == TAKING_OFF) {
if (acc_magnitude_g < AIRBORNE_ACC_MAG_LOW_THRESHOLD) {
tracker->airborne_entry_counter++;
if (tracker->airborne_entry_counter >= AIRBORNE_CONFIRM_COUNT) {
memcpy(tracker->initial_velocity_on_takeoff, tracker->velocity, sizeof(tracker->velocity));
tracker->time_in_air = 0;
tracker->state = IN_AIR;
tracker->airborne_entry_counter = 0;
tracker->grounded_entry_counter = 0;
return;
}
} else {
// 如果在起跳冲击后一段时间内没有失重,说明只是一个颠簸,恢复滑行
// 可以加一个小的超时计数器,这里为了简单先直接恢复
tracker->state = NO_CONSTANT_SPEED;
}
return; // 无论是否切换,都结束本次判断
}
#endif
// --- 静止判断 ---
if (acc_variance < STOP_ACC_VARIANCE_THRESHOLD && gyr_variance < STOP_GYR_VARIANCE_THRESHOLD && gyr_magnitude < STOP_GYR_MAG_THRESHOLD) {
tracker->state = STATIC;
return;
}
// --- 地面状态切换逻辑 ---
switch (tracker->state) {
case LANDING:
tracker->state = STATIC;
break;
case STATIC:
// 优先判断是否进入 WOBBLE 状态
// 条件:陀螺仪活动剧烈,但整体加速度变化不大(说明是原地转或晃)
if (gyr_magnitude > ROTATION_GYR_MAG_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) < WOBBLE_ACC_MAG_THRESHOLD) {
tracker->state = WOBBLE;
}
// 只有在陀螺仪和加速度都满足“前进”特征时,才启动
else if (gyr_variance > START_GYR_VARIANCE_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
break;
case WOBBLE:
// 从 WOBBLE 状态启动的条件应该和从 STATIC 启动一样严格
if (gyr_variance < START_GYR_VARIANCE_THRESHOLD * 2 && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
// 如果陀螺仪活动减弱,则可能恢复静止
else if (gyr_magnitude < ROTATION_GYR_MAG_THRESHOLD * 0.8f) { // 增加迟滞,避免抖动
// 不直接跳回STATIC而是依赖下一轮的全局静止判断
}
break;
case NO_CONSTANT_SPEED: //非匀速状态
//暂时不考虑摔倒
// if (gyr_magnitude > FALLEN_GRY_MAG_THRESHOLD) {
// tracker->state = FALLEN; //摔倒
// } else
if (gyr_magnitude > WHEEL_GYR_MAG_THRESHOLD && acc_variance > WHEEL_ACC_VARIANCE_THRESHOLD) {
tracker->state = WHEEL; //转弯
} else if (fabsf(acc_magnitude - G_ACCELERATION) < SKIING_ACC_MAG_THRESHOLD) {
tracker->state = CONSTANT_SPEED; //匀速
}
break;
case CONSTANT_SPEED: //匀速状态
if (fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
//TODO可以添加进入转弯或摔倒的判断
break;
case WHEEL:
// 从转弯状态,检查转弯是否结束
// 如果角速度和加速度方差都降下来了,就回到普通滑行状态
if (gyr_magnitude < WHEEL_GYR_MAG_THRESHOLD * 0.8f && acc_variance < WHEEL_ACC_VARIANCE_THRESHOLD * 0.8f) { // 乘以一个滞后系数避免抖动
tracker->state = NO_CONSTANT_SPEED;
}
break;
case FALLEN:
// TODO回到 STATIC
break;
}
}
/**
* @brief 主更新函数
*
* @param tracker
* @param acc_g 三轴加速度g
* @param gyr_dps 三轴陀螺仪dps
* @param angle 欧若拉角
* @param dt 采样时间间隔,会用来积分求速度
*/
void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_dps, float *angle, float dt)
{
if (!tracker || !acc_g || !gyr_dps || !angle || dt <= 0) {
return;
}
if(my_skiing_tracker.state == STOP_DETECTION)
return;
// --- 数据预处理和缓冲 ---
float acc_device_ms2[3];
acc_device_ms2[0] = acc_g[0] * G_ACCELERATION;
acc_device_ms2[1] = acc_g[1] * G_ACCELERATION;
acc_device_ms2[2] = acc_g[2] * G_ACCELERATION;
// 将最新数据存入缓冲区
memcpy(tracker->acc_buffer[tracker->buffer_index], acc_device_ms2, sizeof(acc_device_ms2));
memcpy(tracker->gyr_buffer[tracker->buffer_index], gyr_dps, 3 * sizeof(float));
tracker->buffer_index++;
if (tracker->buffer_index >= VARIANCE_BUFFER_SIZE) {
tracker->buffer_index = 0;
tracker->buffer_filled = 1; // 标记缓冲区已满
}
// --- 更新状态机 ---
update_state_machine(tracker, acc_device_ms2, gyr_dps);
// --- 根据状态执行不同的计算逻辑 ---
switch (tracker->state) {
case TAKING_OFF:
tracker->speed = 0.0f;
break;
case IN_AIR:
// 在空中时,只累加滞空时间
tracker->time_in_air += dt;
break;
case LANDING:
// 刚落地,计算空中距离
calculate_air_distance(tracker);
// 清理速度和滤波器状态,为恢复地面追踪做准备
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
break;
case WHEEL:
case NO_CONSTANT_SPEED:
float linear_acc_device[3];
float linear_acc_world[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, linear_acc_world);
// 将最终用于积分的加速度存入 tracker 结构体
memcpy(tracker->acc_no_g, linear_acc_world, sizeof(linear_acc_world));
float acc_world_temp[3]; // 临时变量存储当前周期的加速度
for (int i = 0; i < 2; i++) { // 只处理水平方向的 x 和 y 轴
// --- 核心修改:颠倒滤波器顺序为 HPF -> LPF ---
// 1. 高通滤波 (HPF) 先行: 消除因姿态误差导致的重力泄漏(直流偏置)
// HPF的瞬态响应会产生尖峰这是正常的。
tracker->acc_world_filtered[i] = HPF_ALPHA * (tracker->acc_world_filtered[i] + tracker->acc_no_g[i] - tracker->acc_world_unfiltered_prev[i]);
tracker->acc_world_unfiltered_prev[i] = tracker->acc_no_g[i];
// 2. 低通滤波 (LPF) 殿后: 平滑掉HPF产生的尖峰和传感器自身的高频振动噪声。
// 这里使用 tracker->acc_world_filtered[i] 作为LPF的输入。
tracker->acc_world_lpf[i] = (1.0f - LPF_ALPHA) * tracker->acc_world_filtered[i] + LPF_ALPHA * tracker->acc_world_lpf[i];
// 将最终处理完的加速度值存入临时变量
acc_world_temp[i] = tracker->acc_world_lpf[i];
}
// 计算处理后加速度的水平模长
float acc_horizontal_mag = sqrtf(acc_world_temp[0] * acc_world_temp[0] +
acc_world_temp[1] * acc_world_temp[1]);
#if XTELL_TEST
debug2.acc_magnitude = acc_horizontal_mag;
#endif
// 应用死区,并积分
if (acc_horizontal_mag > ACC_DEAD_ZONE_THRESHOLD) {
tracker->velocity[0] += acc_world_temp[0] * dt;
tracker->velocity[1] += acc_world_temp[1] * dt;
}
// 更新速度和距离
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
tracker->velocity[1] * tracker->velocity[1]);
tracker->distance += tracker->speed * dt;
break;
case CONSTANT_SPEED:
//保持上次的速度不变。只更新距离
tracker->distance += tracker->speed * dt;
break;
case STATIC:
case WOBBLE:
// 速度清零,抑制漂移
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0.0f;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
#if XTELL_TEST
debug2.acc_magnitude = 0;
#endif
break;
case FALLEN:
// TODO
break;
default:
break;
}
#if 1
float linear_acc_device[3];
float linear_acc_world[3];
float tmp_world_acc[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, tmp_world_acc);
float all_world_mag = sqrtf(tmp_world_acc[0] * tmp_world_acc[0] +
tmp_world_acc[1] * tmp_world_acc[1] +
tmp_world_acc[2] * tmp_world_acc[2]);
static int count = 0;
if(count > 100){
xlog("===original(g): x %.2f, y %.2f, z %.2f===\n",acc_g[0],acc_g[1],acc_g[2]);
xlog("===world(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_world_acc[0],tmp_world_acc[1],tmp_world_acc[2],all_world_mag); //去掉重力加速度
xlog("===gyr(dps) : x %.2f, y %.2f, z %.2f===\n",gyr_dps[0],gyr_dps[1],gyr_dps[2]); //angle
xlog("===angle : x %.2f, y %.2f, z %.2f,===\n",angle[0],angle[1],angle[2]);
count = 0;
}
count++;
#endif
}
/**
* @brief 滑雪数据计算
*
* @param acc_data_buf 传入的三轴加速度数据
* @param gyr_data_buf 传入的三轴陀螺仪数据
* @param angle_data 传入的欧若拉角数据
* @return BLE_send_data_t 要发送给蓝牙的数据
*/
BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion) {
static int initialized = 0;
static float acc_data_g[3];
static float gyr_data_dps[3];
if(quaternion != NULL){
memcpy(quaternion_data, quaternion, 4 * sizeof(float));
}
// const float delta_time = DELTA_TIME+0.01f;
// const float delta_time = DELTA_TIME + 0.005f;
const float delta_time = DELTA_TIME;
BLE_send_data_t BLE_send_data;
if (!initialized) {
skiing_tracker_init(&my_skiing_tracker);
initialized = 1;
printf("Skiing Tracker Initialized. Waiting for sensor calibration...\n");
}
#if ACC_RANGE==2
// 加速度 LSB to g
acc_data_g[0] = (float)acc_data_buf[0] / 16384.0f;
acc_data_g[1] = (float)acc_data_buf[1] / 16384.0f;
acc_data_g[2] = (float)acc_data_buf[2] / 16384.0f;
#endif
#if ACC_RANGE==4
// 加速度 LSB to g
acc_data_g[0] = (float)acc_data_buf[0] / 8192.0f;
acc_data_g[1] = (float)acc_data_buf[1] / 8192.0f;
acc_data_g[2] = (float)acc_data_buf[2] / 8192.0f;
#endif
#if ACC_RANGE==8
//±8g 4096
acc_data_g[0] = (float)acc_data_buf[0] / 4096.0f; //ax
acc_data_g[1] = (float)acc_data_buf[1] / 4096.0f; //ay
acc_data_g[2] = (float)acc_data_buf[2] / 4096.0f; //az
#endif
#if ACC_RANGE==16
//±16g 2048
acc_data_g[0] = (float)acc_data_buf[0] / 2048.0f; //ax
acc_data_g[1] = (float)acc_data_buf[1] / 2048.0f; //ay
acc_data_g[2] = (float)acc_data_buf[2] / 2048.0f; //az
#endif
// 陀螺仪 LSB to dps (度/秒)
// ±2000dps量程下转换系数约为 0.061
gyr_data_dps[0] = (float)gyr_data_buf[0] * 0.061f;
gyr_data_dps[1] = (float)gyr_data_buf[1] * 0.061f;
gyr_data_dps[2] = (float)gyr_data_buf[2] * 0.061f;
skiing_tracker_update(&my_skiing_tracker, acc_data_g, gyr_data_dps, angle_data, delta_time);
BLE_send_data.skiing_state = my_skiing_tracker.state;
for (int i = 0; i < 3; i++) {
#ifdef XTELL_TEST
BLE_send_data.acc_data[i] = (short)(acc_data_g[i] * 9.8f) * 100; //cm/^s2
BLE_send_data.gyr_data[i] = (short)gyr_data_dps[i]; //dps
BLE_send_data.angle_data[i] = angle_data[i];
#else
BLE_send_data.acc_data[i] = (short)acc_data_buf[i]; //原始adc数据
BLE_send_data.gyr_data[i] = (short)gyr_data_buf[i]; //原始adc数据
BLE_send_data.angle_data[i] = angle_data[i];
#endif
}
BLE_send_data.speed_cms = (int)(my_skiing_tracker.speed * 100);
BLE_send_data.distance_cm = (int)(my_skiing_tracker.distance * 100);
// printf("Calculate the time interval =============== end\n");
return BLE_send_data;
}

View File

@ -0,0 +1,88 @@
#ifndef SKIING_TRACKER_H
#define SKIING_TRACKER_H
#include "../xtell.h"
// 定义滑雪者可能的状态
typedef enum {
STATIC, // 静止或动态稳定0
NO_CONSTANT_SPEED, // 正在滑雪非匀速1
CONSTANT_SPEED, // 正在滑雪匀速2
WOBBLE, // 正在原地旋转3
WHEEL, // 转弯4
FALLEN, // 已摔倒5
TAKING_OFF, // 起跳冲击阶段6
IN_AIR, // 空中失重阶段7
LANDING, // 落地冲击阶段8
STOP_DETECTION, // 停止检测9
UNKNOWN // 未知状态10
} skiing_state_t;
#define VARIANCE_BUFFER_SIZE 5 // 用于计算方差的数据窗口大小 (5个样本 @ 100Hz = 50ms),减小延迟,提高实时性
#define DELTA_TIME 0.01f
// 追踪器数据结构体
typedef struct {
// 公开数据
float velocity[3]; // 当前速度 (x, y, z),单位: m/s
float distance; // 总滑行距离,单位: m
float speed; // 当前速率 (标量),单位: m/s
skiing_state_t state; // 当前滑雪状态
// 内部计算使用的私有成员
float acc_no_g[3]; // 去掉重力分量后的加速度
// 用于空中距离计算
float time_in_air; // 滞空时间计时器
float initial_velocity_on_takeoff[3]; // 起跳瞬间的速度向量
int airborne_entry_counter; // 进入空中状态的确认计数器
int grounded_entry_counter; // 落地确认计数器
// --- 内部计算使用的私有成员 ---
// 用于动态零速更新和旋转检测的缓冲区
float acc_buffer[VARIANCE_BUFFER_SIZE][3]; // 加速度数据窗口
float gyr_buffer[VARIANCE_BUFFER_SIZE][3]; // 角速度数据窗口
int buffer_index; // 缓冲区当前索引
int buffer_filled; // 缓冲区是否已填满的标志
// 用于高通滤波器(巴特沃斯一阶滤波器)的私有成员,以消除加速度的直流偏置
float acc_world_filtered[3]; //过滤过的
float acc_world_unfiltered_prev[3]; //上一次没过滤的
float acc_world_lpf[3]; // 经过低通滤波后的世界坐标系加速度
} skiing_tracker_t;
//ble发送的数据
typedef struct{ //__attribute__((packed)){ //该结构体取消内存对齐
char sensor_state;
char skiing_state;
int speed_cms; //求出的速度cm/s
int distance_cm; //求出的距离cm
short acc_data[3]; //三轴加速度, g
short gyr_data[3]; //三轴陀螺仪, dps
float angle_data[3]; //欧若拉角
}BLE_send_data_t;
typedef struct{
int acc_KS[3]; //卡尔曼后LSB转换后的 三轴加速度数据cm/s^2
int gyr_KS_dps[3]; //卡尔曼后LSB to dps 三轴陀螺仪数据
int angle_KS[3]; //卡尔曼后,计算得到的欧若拉角数据
}BLE_KS_send_data_t;
#ifdef XTELL_TEST
typedef struct{
float acc_variance; //三轴加速度方差之和
float gyr_variance; //三轴陀螺仪方差之和
float acc_magnitude; //三轴加速度模长
float gyr_magnitude; //三轴陀螺仪模长
}debug_t;
#endif
/**
* @brief 初始化滑雪追踪器
*
* @param tracker 指向 skiing_tracker_t 结构体的指针
*/
void skiing_tracker_init(skiing_tracker_t *tracker);
BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion);
#endif // SKIING_TRACKER_H

View File

@ -1,14 +1,11 @@
/*
使用四元数求角度和去掉重力分量
*/
#include "skiing_tracker.h"
#include "../sensor/SC7U22.h"
#include <math.h>
#include <string.h>
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
#define ENABLE_XLOG 1
#ifdef xlog
#undef xlog
@ -19,83 +16,13 @@
#define xlog(format, ...) ((void)0)
#endif
// --- 静止检测 ---
//两个判断是否静止的必要条件:动态零速更新(ZUPT)阈值
// 加速方差阈值,提高阈值,让“刹车”更灵敏,以便在波浪式前进等慢速漂移时也能触发零速更新
#define STOP_ACC_VARIANCE_THRESHOLD 0.2f
// 陀螺仪方差阈值
#define STOP_GYR_VARIANCE_THRESHOLD 5.0f
// 静止时候的陀螺仪模长
#define STOP_GYR_MAG_THRESHOLD 15
// --- --- ---
// --- 启动滑雪阈值 ---
// 加速度模长与重力的差值大于此值,认为开始运动;降低阈值,让“油门”更灵敏,以便能捕捉到真实的慢速启动
#define START_ACC_MAG_THRESHOLD 1.0f //0.5、1
// 陀螺仪方差阈值,以允许启动瞬间的正常抖动,但仍能过滤掉混乱的、非滑雪的晃动。
#define START_GYR_VARIANCE_THRESHOLD 15.0f
// --- --- ---
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
// --- 滑雪过程 ---
//加速度 模长(不含重力),低于此值视为 在做匀速运动
#define SKIING_ACC_MAG_THRESHOLD 0.5f
//陀螺仪 模长,高于此值视为 摔倒了
#define FALLEN_GRY_MAG_THRESHOLD 2000.0f //未确定
// --- --- ---
// --- 原地旋转抖动 ---
// 加速度 方差 阈值。此值比 静止检测 阈值更宽松,
#define WOBBLE_ACC_VARIANCE_THRESHOLD 0.5f
// 加速度 模长 阈值
#define WOBBLE_ACC_MAG_THRESHOLD 1.0f
// 角速度 总模长 大于此值(度/秒),认为正在进行非滑雪的旋转或摆动
#define ROTATION_GYR_MAG_THRESHOLD 30.0f
// --- --- ---
// --- 滑雪转弯动 ---
// 加速度 方差 阈值,大于此值,滑雪过程可能发生了急转弯
#define WHEEL_ACC_VARIANCE_THRESHOLD 7.0f
// 角速度 总模长 大于此值(度/秒),认为滑雪过程中进行急转弯
#define WHEEL_GYR_MAG_THRESHOLD 500.0f //
// --- --- ---
// --- 跳跃 ---
// 加速度模长低于此值(g),认为进入失重状态(IN_AIR)
#define AIRBORNE_ACC_MAG_LOW_THRESHOLD 0.4f
// 加速度模长高于此值(g),认为发生落地冲击(LANDING)
#define LANDING_ACC_MAG_HIGH_THRESHOLD 3.5f
// 起跳加速度阈值(g)用于进入TAKING_OFF状态
#define TAKEOFF_ACC_MAG_HIGH_THRESHOLD 1.8f
// 进入空中状态确认计数需要连续3个采样点加速度低于阈值才判断为起跳
#define AIRBORNE_CONFIRM_COUNT 3
// 落地状态确认计数加速度恢复到1g附近并持续2个采样点(20ms)则认为已落地
#define GROUNDED_CONFIRM_COUNT 2
// 最大滞空时间(秒),超过此时间强制认为已落地,防止状态锁死
#define MAX_TIME_IN_AIR 12.5f
// --- --- ---
// --- 用于消除积分漂移的滤波器和阈值 ---
// 高通滤波器系数 (alpha)。alpha 越接近1滤除低频(直流偏移)的效果越强,但可能滤掉真实的慢速运动。
// alpha = RC / (RC + dt)参考RC电路而来fc ≈ (1 - alpha) / (2 * π * dt)
#define HPF_ALPHA 0.999f
//0.995f 0.08 Hz 的信号
//0.999f 0.0159 Hz
// --- --- ---
// --- 低通滤波器 ---
// 低通滤波器系数 (alpha)。alpha 越小,滤波效果越强(更平滑),但延迟越大。
// alpha 推荐范围 0.7 ~ 0.95。可以从 0.85 开始尝试。
#define LPF_ALPHA 0.7f
// 加速度死区阈值 (m/s^2)。低于此阈值的加速度被认为是噪声,不参与积分。
// 设得太高会忽略真实的慢速启动,设得太低则无法有效抑制噪声。
//参考0.2f ~ 0.4f
#define ACC_DEAD_ZONE_THRESHOLD 0.05f
// --- 模拟摩擦力,进行速度衰减 ---
#define SPEED_ATTENUATION 1.0f //暂不模拟
BLE_KS_send_data_t KS_data;
static float quaternion_data[4];
#ifdef XTELL_TEST
debug_t debug1;
@ -126,7 +53,7 @@ void stop_detection(void){
}
/**
* @brief 初始化滑雪追踪器
* @brief 初始化
*
* @param tracker
*/
@ -140,18 +67,6 @@ void skiing_tracker_init(skiing_tracker_t *tracker)
tracker->state = STATIC;
}
/**
* @brief 当检测到落地时,计算空中的水平飞行距离并累加到总距离
*/
static void calculate_air_distance(skiing_tracker_t *tracker) {
float horizontal_speed_on_takeoff = sqrtf(
tracker->initial_velocity_on_takeoff[0] * tracker->initial_velocity_on_takeoff[0] +
tracker->initial_velocity_on_takeoff[1] * tracker->initial_velocity_on_takeoff[1]
);
float distance_in_air = horizontal_speed_on_takeoff * tracker->time_in_air;
tracker->distance += distance_in_air;
}
/**
@ -178,7 +93,7 @@ void q_remove_gravity_with_quaternion(const float *acc_device, const float *q, f
}
/**
* @brief 使用四元数将设备坐标系的线性加速度转换到世界坐标系
* @brief 使用四元数将设备坐标系的线性加速度转换到世界坐标系,并且移除重力分量
* @details 同样,此方法比使用欧拉角更优。
* @param acc_linear_device 输入:设备坐标系下的线性加速度 [x, y, z]
* @param q 输入:表示姿态的四元数 [w, x, y, z]
@ -202,208 +117,6 @@ void q_transform_to_world_with_quaternion(const float *acc_linear_device, const
}
/**
* @brief 计算缓冲区内三轴数据的方差之和
*
* @param buffer 传进来的三轴数据:陀螺仪/加速度
* @return float 返回方差和
*/
static float calculate_variance(float buffer[VARIANCE_BUFFER_SIZE][3])
{
float mean[3] = {0};
float variance[3] = {0};
// 计算均值
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
mean[0] += buffer[i][0];
mean[1] += buffer[i][1];
mean[2] += buffer[i][2];
}
mean[0] /= VARIANCE_BUFFER_SIZE;
mean[1] /= VARIANCE_BUFFER_SIZE;
mean[2] /= VARIANCE_BUFFER_SIZE;
// 计算方差
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
variance[0] += (buffer[i][0] - mean[0]) * (buffer[i][0] - mean[0]);
variance[1] += (buffer[i][1] - mean[1]) * (buffer[i][1] - mean[1]);
variance[2] += (buffer[i][2] - mean[2]) * (buffer[i][2] - mean[2]);
}
variance[0] /= VARIANCE_BUFFER_SIZE;
variance[1] /= VARIANCE_BUFFER_SIZE;
variance[2] /= VARIANCE_BUFFER_SIZE;
// 返回三轴方差之和,作为一个综合的稳定度指标
return variance[0] + variance[1] + variance[2];
}
/**
* @brief 摩擦力模拟,进行速度衰减
*
* @param tracker
*/
void forece_of_friction(skiing_tracker_t *tracker){
// 增加速度衰减,模拟摩擦力
tracker->velocity[0] *= SPEED_ATTENUATION;
tracker->velocity[1] *= SPEED_ATTENUATION;
tracker->velocity[2] = 0; // 垂直速度强制归零
}
/**
* @brief 状态机更新
*
* @param tracker 传入同步修改后传出
* @param acc_device_ms2 三轴加速度m/s^2
* @param gyr_dps 三轴陀螺仪dps
*/
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device_ms2, const float *gyr_dps)
{
// 缓冲区未填满时,不进行状态判断,默认为静止
if (!tracker->buffer_filled) {
tracker->state = STATIC;
return;
}
// --- 计算关键指标 ---
float acc_variance = calculate_variance(tracker->acc_buffer); // 计算加速度方差
float gyr_variance = calculate_variance(tracker->gyr_buffer); // 计算陀螺仪方差
float gyr_magnitude = sqrtf(gyr_dps[0]*gyr_dps[0] + gyr_dps[1]*gyr_dps[1] + gyr_dps[2]*gyr_dps[2]); //dps
float acc_magnitude = sqrtf(acc_device_ms2[0]*acc_device_ms2[0] + acc_device_ms2[1]*acc_device_ms2[1] + acc_device_ms2[2]*acc_device_ms2[2]); //m/s^s
float acc_magnitude_g = acc_magnitude / G_ACCELERATION; // 转换为g单位用于跳跃判断
#ifdef XTELL_TEST
debug1.acc_variance =acc_variance;
debug1.gyr_variance =gyr_variance;
debug1.gyr_magnitude=gyr_magnitude;
debug1.acc_magnitude=fabsf(acc_magnitude - G_ACCELERATION);
#endif
// --- 状态机逻辑 (核心修改区域) ---
#if 0 //暂时不考虑空中
// 1. 空中/落地状态的后续处理
if (tracker->state == IN_AIR) {
// A. 检测巨大冲击 -> 落地
if (acc_magnitude_g > LANDING_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = LANDING;
// B. 检测超时 -> 强制落地 (安全机制)
} else if (tracker->time_in_air > MAX_TIME_IN_AIR) {
tracker->state = LANDING;
// C. 检测恢复正常重力 (平缓落地)
} else if (acc_magnitude_g > 0.8f && acc_magnitude_g < 1.5f) {
tracker->grounded_entry_counter++;
if (tracker->grounded_entry_counter >= GROUNDED_CONFIRM_COUNT) {
tracker->state = LANDING;
}
} else {
tracker->grounded_entry_counter = 0;
}
return; // 在空中或刚切换到落地,结束本次状态判断
}
// 2. 严格的 "起跳->空中" 状态转换逻辑
// 只有当处于滑行状态时,才去检测起跳意图
if (tracker->state == NO_CONSTANT_SPEED || tracker->state == CONSTANT_SPEED || tracker->state == WHEEL) {
if (acc_magnitude_g > TAKEOFF_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = TAKING_OFF;
tracker->airborne_entry_counter = 0; // 准备检测失重
return;
}
}
// 只有在TAKING_OFF状态下才去检测是否进入失重
if (tracker->state == TAKING_OFF) {
if (acc_magnitude_g < AIRBORNE_ACC_MAG_LOW_THRESHOLD) {
tracker->airborne_entry_counter++;
if (tracker->airborne_entry_counter >= AIRBORNE_CONFIRM_COUNT) {
memcpy(tracker->initial_velocity_on_takeoff, tracker->velocity, sizeof(tracker->velocity));
tracker->time_in_air = 0;
tracker->state = IN_AIR;
tracker->airborne_entry_counter = 0;
tracker->grounded_entry_counter = 0;
return;
}
} else {
// 如果在起跳冲击后一段时间内没有失重,说明只是一个颠簸,恢复滑行
// 可以加一个小的超时计数器,这里为了简单先直接恢复
tracker->state = NO_CONSTANT_SPEED;
}
return; // 无论是否切换,都结束本次判断
}
#endif
// --- 静止判断 ---
if (acc_variance < STOP_ACC_VARIANCE_THRESHOLD && gyr_variance < STOP_GYR_VARIANCE_THRESHOLD && gyr_magnitude < STOP_GYR_MAG_THRESHOLD) {
tracker->state = STATIC;
return;
}
// --- 地面状态切换逻辑 ---
switch (tracker->state) {
case LANDING:
tracker->state = STATIC;
break;
case STATIC:
// 优先判断是否进入 WOBBLE 状态
// 条件:陀螺仪活动剧烈,但整体加速度变化不大(说明是原地转或晃)
if (gyr_magnitude > ROTATION_GYR_MAG_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) < WOBBLE_ACC_MAG_THRESHOLD) {
tracker->state = WOBBLE;
}
// 只有在陀螺仪和加速度都满足“前进”特征时,才启动
else if (gyr_variance > START_GYR_VARIANCE_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
break;
case WOBBLE:
// 从 WOBBLE 状态启动的条件应该和从 STATIC 启动一样严格
if (gyr_variance < START_GYR_VARIANCE_THRESHOLD * 2 && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
// 如果陀螺仪活动减弱,则可能恢复静止
else if (gyr_magnitude < ROTATION_GYR_MAG_THRESHOLD * 0.8f) { // 增加迟滞,避免抖动
// 不直接跳回STATIC而是依赖下一轮的全局静止判断
}
break;
case NO_CONSTANT_SPEED: //非匀速状态
//暂时不考虑摔倒
// if (gyr_magnitude > FALLEN_GRY_MAG_THRESHOLD) {
// tracker->state = FALLEN; //摔倒
// } else
if (gyr_magnitude > WHEEL_GYR_MAG_THRESHOLD && acc_variance > WHEEL_ACC_VARIANCE_THRESHOLD) {
tracker->state = WHEEL; //转弯
} else if (fabsf(acc_magnitude - G_ACCELERATION) < SKIING_ACC_MAG_THRESHOLD) {
tracker->state = CONSTANT_SPEED; //匀速
}
break;
case CONSTANT_SPEED: //匀速状态
if (fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
//TODO可以添加进入转弯或摔倒的判断
break;
case WHEEL:
// 从转弯状态,检查转弯是否结束
// 如果角速度和加速度方差都降下来了,就回到普通滑行状态
if (gyr_magnitude < WHEEL_GYR_MAG_THRESHOLD * 0.8f && acc_variance < WHEEL_ACC_VARIANCE_THRESHOLD * 0.8f) { // 乘以一个滞后系数避免抖动
tracker->state = NO_CONSTANT_SPEED;
}
break;
case FALLEN:
// TODO回到 STATIC
break;
}
}
/**
* @brief 主更新函数
*
@ -427,139 +140,46 @@ void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_d
acc_device_ms2[1] = acc_g[1] * G_ACCELERATION;
acc_device_ms2[2] = acc_g[2] * G_ACCELERATION;
// 将最新数据存入缓冲区
memcpy(tracker->acc_buffer[tracker->buffer_index], acc_device_ms2, sizeof(acc_device_ms2));
memcpy(tracker->gyr_buffer[tracker->buffer_index], gyr_dps, 3 * sizeof(float));
tracker->buffer_index++;
if (tracker->buffer_index >= VARIANCE_BUFFER_SIZE) {
tracker->buffer_index = 0;
tracker->buffer_filled = 1; // 标记缓冲区已满
}
// --- 更新状态机 ---
update_state_machine(tracker, acc_device_ms2, gyr_dps);
// --- 根据状态执行不同的计算逻辑 ---
switch (tracker->state) {
case TAKING_OFF:
tracker->speed = 0.0f;
break;
case IN_AIR:
// 在空中时,只累加滞空时间
tracker->time_in_air += dt;
break;
case LANDING:
// 刚落地,计算空中距离
calculate_air_distance(tracker);
// 清理速度和滤波器状态,为恢复地面追踪做准备
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
break;
case WHEEL:
case NO_CONSTANT_SPEED:
float linear_acc_device[3];
float linear_acc_world[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, linear_acc_world);
// 将最终用于积分的加速度存入 tracker 结构体
memcpy(tracker->acc_no_g, linear_acc_world, sizeof(linear_acc_world));
float acc_world_temp[3]; // 临时变量存储当前周期的加速度
for (int i = 0; i < 2; i++) { // 只处理水平方向的 x 和 y 轴
// --- 核心修改:颠倒滤波器顺序为 HPF -> LPF ---
// 1. 高通滤波 (HPF) 先行: 消除因姿态误差导致的重力泄漏(直流偏置)
// HPF的瞬态响应会产生尖峰这是正常的。
tracker->acc_world_filtered[i] = HPF_ALPHA * (tracker->acc_world_filtered[i] + tracker->acc_no_g[i] - tracker->acc_world_unfiltered_prev[i]);
tracker->acc_world_unfiltered_prev[i] = tracker->acc_no_g[i];
// 2. 低通滤波 (LPF) 殿后: 平滑掉HPF产生的尖峰和传感器自身的高频振动噪声。
// 这里使用 tracker->acc_world_filtered[i] 作为LPF的输入。
tracker->acc_world_lpf[i] = (1.0f - LPF_ALPHA) * tracker->acc_world_filtered[i] + LPF_ALPHA * tracker->acc_world_lpf[i];
// 将最终处理完的加速度值存入临时变量
acc_world_temp[i] = tracker->acc_world_lpf[i];
}
// 计算处理后加速度的水平模长
float acc_horizontal_mag = sqrtf(acc_world_temp[0] * acc_world_temp[0] +
acc_world_temp[1] * acc_world_temp[1]);
#if XTELL_TEST
debug2.acc_magnitude = acc_horizontal_mag;
#endif
// 应用死区,并积分
if (acc_horizontal_mag > ACC_DEAD_ZONE_THRESHOLD) {
tracker->velocity[0] += acc_world_temp[0] * dt;
tracker->velocity[1] += acc_world_temp[1] * dt;
}
// 更新速度和距离
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
tracker->velocity[1] * tracker->velocity[1]);
tracker->distance += tracker->speed * dt;
break;
case CONSTANT_SPEED:
//保持上次的速度不变。只更新距离
tracker->distance += tracker->speed * dt;
break;
case STATIC:
case WOBBLE:
// 速度清零,抑制漂移
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0.0f;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
#if XTELL_TEST
debug2.acc_magnitude = 0;
#endif
break;
case FALLEN:
// TODO
break;
default:
break;
}
#if 1
float linear_acc_device[3];
float linear_acc_world[3];
#if 1 //测试禁止状态下陀螺仪的三轴加速度,去掉重力分量后是否正常
float tmp_device_acc[3];
float tmp_world_acc[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// remove_gravity_in_device_frame(acc_device_ms2,angle,tmp_device_acc);
// transform_acc_to_world_frame(acc_device_ms2,angle,tmp_world_acc);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, tmp_world_acc);
q_remove_gravity_with_quaternion(acc_device_ms2,quaternion_data,tmp_device_acc);
q_transform_to_world_with_quaternion(tmp_device_acc,quaternion_data,tmp_world_acc);
// 计算处理后加速度的水平模长
float all_device_mag = sqrtf(tmp_device_acc[0] * tmp_device_acc[0] +
tmp_device_acc[1] * tmp_device_acc[1] +
tmp_device_acc[2] * tmp_device_acc[2]);
float all_world_mag = sqrtf(tmp_world_acc[0] * tmp_world_acc[0] +
tmp_world_acc[1] * tmp_world_acc[1] +
tmp_world_acc[2] * tmp_world_acc[2]);
float gx_proj = 2.0f * (quaternion_data[1] * quaternion_data[3] - quaternion_data[0] * quaternion_data[2]);
float gy_proj = 2.0f * (quaternion_data[0] * quaternion_data[1] + quaternion_data[2] * quaternion_data[3]);
float gz_proj = quaternion_data[0] * quaternion_data[0] - quaternion_data[1] * quaternion_data[1] - quaternion_data[2] * quaternion_data[2] + quaternion_data[3] * quaternion_data[3];
static int count = 0;
if(count > 100){
xlog("===original(g): x %.2f, y %.2f, z %.2f===\n",acc_g[0],acc_g[1],acc_g[2]);
xlog("===world(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_world_acc[0],tmp_world_acc[1],tmp_world_acc[2],all_world_mag); //去掉重力加速度
xlog("===device(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_device_acc[0],tmp_device_acc[1],tmp_device_acc[2],all_device_mag);
xlog("===world(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_world_acc[0],tmp_world_acc[1],tmp_world_acc[2],all_world_mag);
xlog("===gyr(dps) : x %.2f, y %.2f, z %.2f, all %.2f===\n",gyr_dps[0],gyr_dps[1],gyr_dps[2]); //angle
xlog("===angle : x %.2f, y %.2f, z %.2f,===\n",angle[0],angle[1],angle[2]);
xlog("GRAVITY VECTOR in device frame: gx=%.2f, gy=%.2f, gz=%.2f\n", gx_proj, gy_proj, gz_proj);
extern mmc5603nj_cal_data_t cal_data;
xlog("cal_data:X: %.4f, Y: %.4f, Z: %.4f\n", cal_data.offset_x,cal_data.offset_y,cal_data.offset_z);
count = 0;
}
count++;
#endif
}
@ -577,7 +197,6 @@ BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short*
static int initialized = 0;
static float acc_data_g[3];
static float gyr_data_dps[3];
if(quaternion != NULL){
memcpy(quaternion_data, quaternion, 4 * sizeof(float));
}
@ -630,21 +249,21 @@ BLE_send_data_t sensor_processing_task(signed short* acc_data_buf, signed short*
skiing_tracker_update(&my_skiing_tracker, acc_data_g, gyr_data_dps, angle_data, delta_time);
BLE_send_data.skiing_state = my_skiing_tracker.state;
for (int i = 0; i < 3; i++) {
#ifdef XTELL_TEST
BLE_send_data.acc_data[i] = (short)(acc_data_g[i] * 9.8f) * 100; //cm/^s2
BLE_send_data.gyr_data[i] = (short)gyr_data_dps[i]; //dps
BLE_send_data.angle_data[i] = angle_data[i];
#else
BLE_send_data.acc_data[i] = (short)acc_data_buf[i]; //原始adc数据
BLE_send_data.gyr_data[i] = (short)gyr_data_buf[i]; //原始adc数据
BLE_send_data.angle_data[i] = angle_data[i];
#endif
}
BLE_send_data.speed_cms = (int)(my_skiing_tracker.speed * 100);
BLE_send_data.distance_cm = (int)(my_skiing_tracker.distance * 100);
// printf("Calculate the time interval =============== end\n");
// BLE_send_data.skiing_state = my_skiing_tracker.state;
// for (int i = 0; i < 3; i++) {
// #ifdef XTELL_TEST
// BLE_send_data.acc_data[i] = (short)(acc_data_g[i] * 9.8f) * 100; //cm/^s2
// BLE_send_data.gyr_data[i] = (short)gyr_data_dps[i]; //dps
// BLE_send_data.angle_data[i] = angle_data[i];
// #else
// BLE_send_data.acc_data[i] = (short)acc_data_buf[i]; //原始adc数据
// BLE_send_data.gyr_data[i] = (short)gyr_data_buf[i]; //原始adc数据
// BLE_send_data.angle_data[i] = angle_data[i];
// #endif
// }
// BLE_send_data.speed_cms = (int)(my_skiing_tracker.speed * 100);
// BLE_send_data.distance_cm = (int)(my_skiing_tracker.distance * 100);
// // printf("Calculate the time interval =============== end\n");
return BLE_send_data;
}

View File

@ -30,7 +30,7 @@ typedef struct {
skiing_state_t state; // 当前滑雪状态
// 内部计算使用的私有成员
float acc_no_g[3]; // 去掉重力分量后的加速度
float acc_world[3]; // 在世界坐标系下的加速度
// 用于空中距离计算
float time_in_air; // 滞空时间计时器

View File

@ -23,6 +23,7 @@
#include "./ano/ano_protocol.h"
#include "./sensor/MMC56.h"
#include "./sensor/BMP280.h"
#include "./sensor/AK8963.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
//宏定义
#define ENABLE_XLOG 1
@ -60,6 +61,7 @@ static u16 calculate_data_id;
static u8 sensor_data_buffer[SENSOR_DATA_BUFFER_SIZE];
static circle_buffer_t sensor_cb;
static int count = 0;
//--- test ---
// 全局变量
@ -219,9 +221,8 @@ void sensor_read_data(){
// status = SIX_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0, tmp.quaternion_output);
status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle,NULL, 0, tmp.quaternion_output);
int count = 0;
if(count > 100){
count = 0;
char log_buffer[100]; // 100个字符应该足够了
@ -240,7 +241,7 @@ void sensor_read_data(){
// status = SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0, tmp.quaternion_output);
status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle,NULL, 0, tmp.quaternion_output);
memcpy(tmp.acc_data, &combined_raw_data[0], 3 * sizeof(signed short));
memcpy(tmp.gyr_data, &combined_raw_data[3], 3 * sizeof(signed short));
@ -295,7 +296,6 @@ void calculate_data(){
// xlog("=======end\n");
}
static int count = 0;
extern char xt_Check_Flag;
void BLE_send_data(){
// xlog("=======start\n");
@ -462,66 +462,63 @@ void xt_hw_iic_test(){
void sensor_measure(void){
// xlog("=======sensor_read_data START\n");
// static signed short combined_raw_data[6];
// static int initialized = 0;
// static int calibration_done = 0;
// char status = 0;
static signed short combined_raw_data[6];
static int initialized = 0;
static int calibration_done = 0;
char status = 0;
// if(count_test1 >= 100){
// count_test1 = 0;
// xlog("count_test1\n");
// }
// count_test1++;
// static sensor_data_t tmp;
// SL_SC7U22_RawData_Read(tmp.acc_data,tmp.gyr_data);
// // xlog("=======sensor_read_data middle 1\n");
// memcpy(&combined_raw_data[0], tmp.acc_data, 3 * sizeof(signed short));
// memcpy(&combined_raw_data[3], tmp.gyr_data, 3 * sizeof(signed short));
// if (!calibration_done) { //第1次启动开启零漂检测
// // status = SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// // status = SIX_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// // status = Original_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0, tmp.quaternion_output);
// int count = 0;
// if(count > 100){
// count = 0;
// char log_buffer[100];
// // snprintf( log_buffer, sizeof(log_buffer),"status:%d\n",status);
// // send_data_to_ble_client(&log_buffer,strlen(log_buffer));
// xlog("status:%d\n", status);
// }
// count++;
// if (status == 1) {
// calibration_done = 1;
// printf("Sensor calibration successful! Skiing mode is active.\n");
// }
// } else {
// // printf("Calculate the time interval =============== start\n");
// // status = SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// // status = SIX_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// // status = Original_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0, tmp.quaternion_output);
// memcpy(tmp.acc_data, &combined_raw_data[0], 3 * sizeof(signed short));
// memcpy(tmp.gyr_data, &combined_raw_data[3], 3 * sizeof(signed short));
// BLE_send_data_t data_by_calculate = sensor_processing_task(tmp.acc_data, tmp.gyr_data,tmp.angle, tmp.quaternion_output);
// extern void ano_send_attitude_data(float rol, float pit, float yaw, uint8_t fusion_sta) ;
// ano_send_attitude_data(tmp.angle[0],tmp.angle[1],tmp.angle[2], 1);
// }
static sensor_data_t tmp;
mmc5603nj_mag_data_t mag_data;
// mmc5603nj_read_mag_data(&mag_data);
SL_SC7U22_RawData_Read(tmp.acc_data,tmp.gyr_data);
// os_time_dly(1);
mmc5603nj_read_mag_data(&mag_data);
// xlog("=======sensor_read_data middle 1\n");
memcpy(&combined_raw_data[0], tmp.acc_data, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], tmp.gyr_data, 3 * sizeof(signed short));
// if(count_test2 > 100){
// count_test2++;
printf("Mag X: %.4f, Y: %.4f, Z: %.4f Gauss\n", mag_data.x, mag_data.y, mag_data.z);
// }
// count_test2++;
if (!calibration_done) { //第1次启动开启零漂检测
// status = SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(1, combined_raw_data, tmp.angle,&mag_data, 0, tmp.quaternion_output);
if(count > 100){
count = 0;
char log_buffer[100];
// snprintf( log_buffer, sizeof(log_buffer),"status:%d\n",status);
// send_data_to_ble_client(&log_buffer,strlen(log_buffer));
xlog("status:%d\n", status);
xlog("RawData:AX=%d,AY=%d,AZ=%d,GX=%d,GY=%d,GZ=%d\r\n",combined_raw_data[0],combined_raw_data[1],combined_raw_data[2],combined_raw_data[3],combined_raw_data[4],combined_raw_data[5]);
}
count++;
if (status == 1) {
calibration_done = 1;
printf("Sensor calibration successful! Skiing mode is active.\n");
}
} else {
// printf("Calculate the time interval =============== start\n");
// status = SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = SIX_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
// status = Original_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle, 0);
status = Q_SL_SC7U22_Angle_Output(0, combined_raw_data, tmp.angle,&mag_data, 0, tmp.quaternion_output);
memcpy(tmp.acc_data, &combined_raw_data[0], 3 * sizeof(signed short));
memcpy(tmp.gyr_data, &combined_raw_data[3], 3 * sizeof(signed short));
BLE_send_data_t data_by_calculate = sensor_processing_task(tmp.acc_data, tmp.gyr_data,tmp.angle, tmp.quaternion_output);
extern void ano_send_attitude_data(float rol, float pit, float yaw, uint8_t fusion_sta) ;
ano_send_attitude_data(tmp.angle[0],tmp.angle[1],tmp.angle[2], 1);
}
// mmc5603nj_mag_data_t mag_data;
// mmc5603nj_read_mag_data(&mag_data);
// float temperature = mmc5603nj_get_temperature();
// count_test1++;
// if(count_test1 >500){
// count_test1 =0;
// xlog("Mag X: %.4f, Y: %.4f, Z: %.4f Gauss\n", mag_data.x, mag_data.y, mag_data.z);
// }
// xlog("=======sensor_read_data END\n");
}
@ -550,27 +547,21 @@ void xtell_task_create(void){
// os_time_dly(10);
// delay_2ms(10);
SL_SC7U22_Config();
// if (mmc5603nj_init() != 0) {
// xlog("MMC5603NJ initialization failed!\n");
// if(bmp280_init() != 0){
// xlog("bmp280 init error\n");
// }
// xlog("MMC5603NJ PID: 0x%02X\n", mmc5603nj_get_pid());
// // 启用连续测量模式
// mmc5603nj_enable_continuous_mode();
// xlog("Continuous measurement mode enabled.\n");
// float temp, press;
// bmp280_read_data(&temp, &press);
// xlog("get temp: %d, get press: %d\n",temp, press);
// MPU9250_Mag_Init();
//iic总线设备扫描
extern void i2c_scanner_probe(void);
i2c_scanner_probe();
if(bmp280_init() != 0){
xlog("bmp280 init error\n");
}
float temp, press;
bmp280_read_data(&temp, &press);
xlog("get temp: %d, get press: %d\n",temp, press);
// extern void i2c_scanner_probe(void);
// i2c_scanner_probe();
xlog("xtell_task_create\n");
@ -579,7 +570,7 @@ void xtell_task_create(void){
ano_protocol_init(115200);
create_process(&calculate_data_id, "calculate",NULL, sensor_measure, 2000);
circle_buffer_init(&sensor_read, sensor_read_buffer, SENSOR_DATA_BUFFER_SIZE, sizeof(sensor_data_t));

View File

@ -0,0 +1,133 @@
#include "AK8963.h"
#include "math.h"
#include "os/os_api.h"
#include "../xtell.h"
#include "printf.h"
// 用于存放从Fuse ROM读取的磁力计灵敏度校准值
static float mag_asa_x = 1.0f;
static float mag_asa_y = 1.0f;
static float mag_asa_z = 1.0f;
// 磁力计在16-bit分辨率下的转换因子 (单位: uT/LSB)
#define MAG_RAW_TO_UT_FACTOR (4912.0f / 32760.0f)
/**
* @brief 初始化MPU9250的磁力计AK8963
* @return 0: 成功, 1: MPU9250连接失败, 2: AK8963连接失败
*/
u8 MPU9250_Mag_Init(void) {
u8 temp_data[3];
// --- 检查 MPU9250 连接并复位 ---
_gravity_sensor_get_ndata(MPU9250_ADDR_R, MPU9250_WHO_AM_I, temp_data, 1);
if (temp_data[0] != 0x71 && temp_data[0] != 0x73) {
printf("MPU9250 comm failed, read ID: 0x%X\n", temp_data[0]);
return 1;
}
printf("MPU9250 get id:0x%X\n", temp_data[0]);
gravity_sensor_command(MPU9250_ADDR_W, MPU9250_PWR_MGMT_1, 0x80); // 软复位
os_time_dly(10); // 等待复位完成
gravity_sensor_command(MPU9250_ADDR_W, MPU9250_PWR_MGMT_1, 0x01); // 退出睡眠,选择时钟源
os_time_dly(2);
// --- 强制复位 I2C Master 模块并开启旁路 ---
gravity_sensor_command(MPU9250_ADDR_W, MPU9250_USER_CTRL, 0x20);
os_time_dly(1);
gravity_sensor_command(MPU9250_ADDR_W, MPU9250_USER_CTRL, 0x00);
os_time_dly(1);
gravity_sensor_command(MPU9250_ADDR_W, MPU9250_INT_PIN_CFG, 0x02);
os_time_dly(2);
// --- 再次验证 AK8963 连接 ---
_gravity_sensor_get_ndata(AK8963_ADDR_R, AK8963_WIA, temp_data, 1);
if (temp_data[0] != 0x48) {
printf("AK8963 comm failed after final attempt, read ID: 0x%X\n", temp_data[0]);
return 2;
}
printf("AK8963 get id: 0x%X\n", temp_data[0]);
// ------------------ 配置 AK8963 ------------------
// Power-down模式
gravity_sensor_command(AK8963_ADDR_W, AK8963_CNTL1, 0x00);
os_time_dly(1);
// Fuse ROM access模式
gravity_sensor_command(AK8963_ADDR_W, AK8963_CNTL1, 0x0F);
os_time_dly(1);
_gravity_sensor_get_ndata(AK8963_ADDR_R, AK8963_ASAX, temp_data, 3);
// 计算校准系数
mag_asa_x = (float)(temp_data[0] - 128) / 256.0f + 1.0f;
mag_asa_y = (float)(temp_data[1] - 128) / 256.0f + 1.0f;
mag_asa_z = (float)(temp_data[2] - 128) / 256.0f + 1.0f;
// 再次进入Power-down模式
gravity_sensor_command(AK8963_ADDR_W, AK8963_CNTL1, 0x00);
os_time_dly(1);
// 设置工作模式16-bit分辨率100Hz连续测量模式 (0x16)
gravity_sensor_command(AK8963_ADDR_W, AK8963_CNTL1, 0x16);
os_time_dly(1);
printf("AK8963 configured successfully.\n");
return 0; // 初始化成功
}
/**
* @brief 读取磁力计的三轴原始数据
* @param mx, my, mz - 用于存放X, Y, Z轴数据的指针 (int16_t类型)
* @return 0: 成功, 1: 数据未就绪, 2: 数据溢出
*/
u8 MPU9250_Read_Mag_Raw(int16_t *mx, int16_t *my, int16_t *mz) {
u8 read_buf[7];
// 检查数据是否准备好 (使用8位读地址)
_gravity_sensor_get_ndata(AK8963_ADDR_R, AK8963_ST1, read_buf, 1);
if (!(read_buf[0] & 0x01)) {
return 1; // 数据未就绪
}
// 连续读取7个字节 (使用8位读地址)
_gravity_sensor_get_ndata(AK8963_ADDR_R, AK8963_HXL, read_buf, 7);
// 检查数据是否溢出
if (read_buf[6] & 0x08) {
return 2; // 数据溢出
}
// 组合数据
*mx = (int16_t)((read_buf[1] << 8) | read_buf[0]);
*my = (int16_t)((read_buf[3] << 8) | read_buf[2]);
*mz = (int16_t)((read_buf[5] << 8) | read_buf[4]);
return 0; // 读取成功
}
/**
* @brief 读取磁力计的三轴数据并转换为uT(微特斯拉) (此函数内部逻辑不变)
* @param mx, my, mz - 用于存放X, Y, Z轴数据的指针 (float类型)
* @return 0: 成功, 1: 数据未就绪, 2: 数据溢出
*/
u8 MPU9250_Read_Mag_uT(float *mx, float *my, float *mz) {
int16_t raw_mx, raw_my, raw_mz;
u8 status = MPU9250_Read_Mag_Raw(&raw_mx, &raw_my, &raw_mz);
if (status != 0) {
return status;
}
// 应用灵敏度校准并转换为uT单位
*mx = (float)raw_mx * mag_asa_x * MAG_RAW_TO_UT_FACTOR;
*my = (float)raw_my * mag_asa_y * MAG_RAW_TO_UT_FACTOR;
*mz = (float)raw_mz * mag_asa_z * MAG_RAW_TO_UT_FACTOR;
return 0;
}

View File

@ -0,0 +1,46 @@
// mpu9250_mag.h
#ifndef __MPU9250_MAG_H
#define __MPU9250_MAG_H
#include "stdint.h" // 假设你有标准整数类型u8 对应 uint8_t
#include "gSensor/gSensor_manage.h"
//==================================================================================
// MPU9250 和 AK8963 的 I2C 地址 (已转换为8位格式)
//==================================================================================
// MPU9250的7位地址是 0x68(接地)
#define MPU9250_ADDR_7BIT 0x69
#define MPU9250_ADDR_W (MPU9250_ADDR_7BIT << 1 | 0) // 8位写地址: 0xD0
#define MPU9250_ADDR_R (MPU9250_ADDR_7BIT << 1 | 1) // 8位读地址: 0xD1
// AK8963磁力计的7位地址是 0x0C
#define AK8963_ADDR_7BIT 0x0C
#define AK8963_ADDR_W (AK8963_ADDR_7BIT << 1 | 0) // 8位写地址: 0x18
#define AK8963_ADDR_R (AK8963_ADDR_7BIT << 1 | 1) // 8位读地址: 0x19
//==================================================================================
// MPU9250 相关寄存器 (用于开启旁路模式)
//==================================================================================
#define MPU9250_WHO_AM_I 0x75
#define MPU9250_INT_PIN_CFG 0x37
#define MPU9250_USER_CTRL 0x6A
#define MPU9250_PWR_MGMT_1 0x6B
//==================================================================================
// AK8963 磁力计相关寄存器
//==================================================================================
#define AK8963_WIA 0x00
#define AK8963_ST1 0x02
#define AK8963_HXL 0x03
#define AK8963_ST2 0x09
#define AK8963_CNTL1 0x0A
#define AK8963_ASAX 0x10
u8 MPU9250_Mag_Init(void);
u8 MPU9250_Read_Mag_Raw(int16_t *mx, int16_t *my, int16_t *mz);
u8 MPU9250_Read_Mag_uT(float *mx, float *my, float *mz);
#endif // __MPU9250_MAG_H

View File

@ -17,9 +17,7 @@
#define BMP_IIC_READ_ADDRESS (BMP_IIC_WRITE_ADDRESS | 0x01)
#endif
// BMP280 I2C 地址 (SDO/ADO 引脚接地)
#define BMP280_I2C_ADDR_LOW (0x76*2)
//7位地址:76, 8位地址:EC (接地)
// BMP280 寄存器地址
#define BMP280_REG_CALIB_START 0x88

View File

@ -1,6 +1,3 @@
/*
三轴磁力计 - MMC5603NJ
*/
#include "MMC56.h"
#include "math.h"
@ -9,45 +6,18 @@
#include "gSensor/gSensor_manage.h"
#include "printf.h"
#define ENABLE_XLOG 1
#ifdef xlog
#undef xlog
#endif
#if ENABLE_XLOG
#define xlog(format, ...) printf("[XT:%s] " format, __func__, ##__VA_ARGS__)
#else
#define xlog(format, ...) ((void)0)
#endif
/*==================================================================================*/
/* MMC5603NJ 内部定义 */
/*==================================================================================*/
// 用于跟踪当前是否处于连续测量模式
static u8 g_continuous_mode_enabled = 0;
static uint8_t g_continuous_mode_enabled = 0;
mmc5603nj_cal_data_t cal_data; //校准数据
/*==================================================================================*/
/* 封装的底层I2C读写函数 */
/*==================================================================================*/
/**
* @brief 写入单个字节到MMC5603NJ寄存器
*/
static void mmc5603nj_write_reg(uint8_t reg, uint8_t data) {
gravity_sensor_command(MMC_IIC_WRITE_ADDRESS, reg, data);
}
/**
* @brief 从MMC5603NJ读取多个字节
*/
static uint32_t mmc5603nj_read_regs(uint8_t reg, uint8_t *buf, uint8_t len) {
return _gravity_sensor_get_ndata(MMC_IIC_READ_ADDRESS, reg, buf, len);
}
/*==================================================================================*/
/* 外部接口函数实现 */
/*==================================================================================*/
// 外部接口函数实现
uint8_t mmc5603nj_get_pid(void) {
uint8_t pid = 0;
@ -56,69 +26,145 @@ uint8_t mmc5603nj_get_pid(void) {
}
int mmc5603nj_init(void) {
// 检查产品ID是否正确
if (mmc5603nj_get_pid() != 0x10) {
xlog("init error: check id error %d\n", mmc5603nj_get_pid());
return -1; // 设备ID不匹配
// ID
if (mmc5603nj_get_pid() != 0x80) {
printf("MMC5603NJ init failed: wrong Product ID (read: 0x%X)\n", mmc5603nj_get_pid());
return -1;
}
// 对传感器执行软件复位 (将 INCTRL0 寄存器的 Do_reset 位置1)
mmc5603nj_write_reg(MMC_INCTRL0, 0x08);
// 软件复位
mmc5603nj_write_reg(MMC_INCTRL1, 0x80); // SW_RESET bit
os_time_dly(20); // 等待复位完成
// 设置20位分辨率 (BW[1:0] = 11)
// 同时确保所有轴都使能 (X/Y/Z_inhibit = 0)
mmc5603nj_write_reg(MMC_INCTRL1, 0x03);
os_time_dly(1);
// 设置内部控制寄存器2
// CMM_EN = 1 (使能连续模式功能)
// HPOWER = 1 (高功耗模式,更稳定)
mmc5603nj_write_reg(MMC_INCTRL2, 0x90); // 0b10010000
// 设置自动SET/RESET功能
// AUTO_SR_EN = 1
mmc5603nj_write_reg(MMC_INCTRL0, 0x20); // 0b00100000
g_continuous_mode_enabled = 0;
return 0; // 初始化成功
printf("MMC5603NJ initialized successfully.\n");
mmc5603nj_enable_continuous_mode(0x04);
printf("\n--- Magnetometer Calibration Start ---\n");
printf("Slowly rotate the device in all directions (like drawing a 3D '8')...\n");
printf("Calibration will last for 20 seconds.\n\n");
printf("will start after 5 seconds\n\n");
os_time_dly(500);
// 定义校准时长和采样间隔
const uint32_t calibration_duration_ms = 20000; // 20秒
const uint32_t sample_interval_ms = 100; // 每100ms采样一次
// 初始化最大最小值
// 使用一个临时变量来读取数据避免干扰read函数的正常逻辑
mmc5603nj_mag_data_t temp_mag_data;
// 首次读取以获取初始值
mmc5603nj_read_mag_data(&temp_mag_data); // 首次读取不应用校准
float max_x = temp_mag_data.x;
float min_x = temp_mag_data.x;
float max_y = temp_mag_data.y;
float min_y = temp_mag_data.y;
float max_z = temp_mag_data.z;
float min_z = temp_mag_data.z;
uint32_t start_time = os_time_get(); // 假设os_time_get()返回毫秒级时间戳
int samples = 0;
int over = calibration_duration_ms/sample_interval_ms;
while (samples <= over) {
// 读取原始磁力计数据
mmc5603nj_read_mag_data(&temp_mag_data);
// 更新最大最小值
if (temp_mag_data.x > max_x) max_x = temp_mag_data.x;
if (temp_mag_data.x < min_x) min_x = temp_mag_data.x;
if (temp_mag_data.y > max_y) max_y = temp_mag_data.y;
if (temp_mag_data.y < min_y) min_y = temp_mag_data.y;
if (temp_mag_data.z > max_z) max_z = temp_mag_data.z;
if (temp_mag_data.z < min_z) min_z = temp_mag_data.z;
samples++;
os_time_dly(sample_interval_ms / 10); // os_time_dly的参数通常是ticks (1 tick = 10ms)
}
// 检查数据范围是否合理,防止传感器未动或故障
if ((max_x - min_x < 0.1f) || (max_y - min_y < 0.1f) || (max_z - min_z < 0.1f)) {
printf("\n--- Calibration Failed ---\n");
printf("Device might not have been rotated enough.\n");
printf("X range: %.2f, Y range: %.2f, Z range: %.2f\n", max_x - min_x, max_y - min_y, max_z - min_z);
return -1;
}
// 计算硬磁偏移 (椭球中心)
cal_data.offset_x = (max_x + min_x) / 2.0f;
cal_data.offset_y = (max_y + min_y) / 2.0f;
cal_data.offset_z = (max_z + min_z) / 2.0f;
printf("\n--- Calibration Complete ---\n");
printf("Collected %d samples.\n", samples);
printf("Offsets (Gauss):\n");
printf(" X: %.4f\n", cal_data.offset_x);
printf(" Y: %.4f\n", cal_data.offset_y);
printf(" Z: %.4f\n", cal_data.offset_z);
printf("Please save these values and apply them in your code.\n\n");
return 0;
}
void mmc5603nj_set_data_rate(uint8_t rate) {
mmc5603nj_write_reg(MMC_ODR, rate);
}
void mmc5603nj_enable_continuous_mode(void) {
uint8_t reg_val;
// 启用连续模式需要设置 INCTRL0 和 INCTRL2 寄存器
// 1. 设置 INCTRL0 的 Cmm_en 位 (bit 7)
mmc5603nj_read_regs(MMC_INCTRL0, &reg_val, 1);
reg_val |= 0x80;
mmc5603nj_write_reg(MMC_INCTRL0, reg_val);
// 2. 设置 INCTRL2 的 Cmm_freq_en 位 (bit 4)
mmc5603nj_read_regs(MMC_INCTRL2, &reg_val, 1);
reg_val |= 0x10;
mmc5603nj_write_reg(MMC_INCTRL2, reg_val);
void mmc5603nj_enable_continuous_mode(uint8_t rate) {
// 在连续模式下ODR寄存器必须被设置
mmc5603nj_write_reg(MMC_ODR, rate); //要设置频率
// mmc5603nj_set_data_rate(0x04);
// 启用连续模式 (INCTRL2的CMM_EN位已在init中设置)
// 只需要设置 INCTRL0 的 CMM_FREQ_EN 位
mmc5603nj_write_reg(MMC_INCTRL0, 0xA0); // 0b10100000 (CMM_FREQ_EN=1, AUTO_SR_EN=1)
g_continuous_mode_enabled = 1;
}
void mmc5603nj_disable_continuous_mode(void) {
uint8_t reg_val;
// 禁用连续模式只需要清除 INCTRL2 的 Cmm_freq_en 位
mmc5603nj_read_regs(MMC_INCTRL2, &reg_val, 1);
reg_val &= ~0x10; // 清除 bit 4
mmc5603nj_write_reg(MMC_INCTRL2, reg_val);
// 禁用连续模式
mmc5603nj_write_reg(MMC_INCTRL0, 0x20); // 恢复到仅使能 AUTO_SR_EN 的状态
g_continuous_mode_enabled = 0;
}
float mmc5603nj_get_temperature(void) {
uint8_t status = 0;
uint8_t temp_raw = 0;
uint8_t timeout = 20;
// 1. 触发一次温度测量 (写入 0x02 到 INCTRL0 寄存器)
mmc5603nj_write_reg(MMC_INCTRL0, 0x02);
// 触发一次温度测量
mmc5603nj_write_reg(MMC_INCTRL0, 0x02); // TAKE_MEAS_T
// 2. 等待测量完成 (轮询 STATUS1 寄存器的 Meas_T_done 位)
// 等待测量完成
do {
os_time_dly(10); // 等待一下避免过于频繁的I2C读取
os_time_dly(10);
mmc5603nj_read_regs(MMC_STATUS1, &status, 1);
} while ((status & 0x80) == 0);
timeout--;
} while ((status & 0x80) == 0 && timeout > 0);
if (timeout == 0) {
printf("Error: Temperature measurement timeout!\n");
return -273.15f; // 返回一个绝对零度的错误值
}
// 3. 读取温度原始值
mmc5603nj_read_regs(MMC_TOUT, &temp_raw, 1);
// 4. 根据公式计算实际温度: Temp(°C) = -75 + 0.8 * TOUT
return ((float)temp_raw * 0.8f) - 75.0f;
}
@ -126,32 +172,50 @@ void mmc5603nj_read_mag_data(mmc5603nj_mag_data_t *mag_data) {
uint8_t buffer[9];
if (g_continuous_mode_enabled) {
// 连续模式下,直接读取数据即可
mmc5603nj_read_regs(MMC_XOUT0, buffer, 9);
// 连续模式下,只需检查数据是否就绪
uint8_t status = 0;
mmc5603nj_read_regs(MMC_STATUS1, &status, 1);
if ((status & 0x40) == 0) { // Meas_M_done bit
// 数据未就绪,可以选择返回或等待,这里我们直接返回旧数据
return;
}
} else {
// 单次测量模式
uint8_t status = 0;
// 1. 触发一次磁场测量 (写入 0x01 到 INCTRL0 寄存器)
mmc5603nj_write_reg(MMC_INCTRL0, 0x01);
uint8_t timeout = 20;
// 2. 等待测量完成 (轮询 STATUS1 寄存器的 Meas_M_done 位)
// 触发一次带自动SET/RESET的磁场测量
mmc5603nj_write_reg(MMC_INCTRL0, 0x21); // 0b00100001 (TAKE_MEAS_M=1, AUTO_SR_EN=1)
// 等待测量完成
do {
os_time_dly(10); // 等待一下
os_time_dly(10);
mmc5603nj_read_regs(MMC_STATUS1, &status, 1);
} while ((status & 0x40) == 0);
// 3. 读取9个字节的原始数据
mmc5603nj_read_regs(MMC_XOUT0, buffer, 9);
timeout--;
} while ((status & 0x40) == 0 && timeout > 0);
if (timeout == 0) {
printf("Error: Magnetic measurement timeout!\n");
mag_data->x = mag_data->y = mag_data->z = 0.0f;
return;
}
}
// 读取9个字节的原始数据
mmc5603nj_read_regs(MMC_XOUT0, buffer, 9);
// 解析数据 (20位分辨率)
// 零点偏置: 2^19 = 524288, 灵敏度: 2^14 = 16384 LSB/Gauss
int32_t raw_x = (buffer[0] << 12) | (buffer[1] << 4) | (buffer[6] >> 4);
int32_t raw_y = (buffer[2] << 12) | (buffer[3] << 4) | (buffer[7] >> 4);
int32_t raw_z = (buffer[4] << 12) | (buffer[5] << 4) | (buffer[8] >> 4);
int32_t raw_x = ((uint32_t)buffer[0] << 12) | ((uint32_t)buffer[1] << 4) | ((uint32_t)buffer[6] & 0x0F);
int32_t raw_y = ((uint32_t)buffer[2] << 12) | ((uint32_t)buffer[3] << 4) | ((uint32_t)buffer[6] >> 4);
int32_t raw_z = ((uint32_t)buffer[4] << 12) | ((uint32_t)buffer[5] << 4) | ((uint32_t)buffer[8] & 0x0F);
// 应用偏置和灵敏度进行转换
mag_data->x = ((float)raw_x - 524288.0f) / 16384.0f;
mag_data->y = ((float)raw_y - 524288.0f) / 16384.0f;
mag_data->z = ((float)raw_z - 524288.0f) / 16384.0f;
//减去偏移
mag_data->x -= cal_data.offset_x;
mag_data->y -= cal_data.offset_y;
mag_data->z -= cal_data.offset_z;
}

View File

@ -43,6 +43,12 @@ typedef struct {
float z;
} mmc5603nj_mag_data_t;
// 定义一个结构体来存放磁力计的硬磁偏移校准数据
typedef struct {
float offset_x;
float offset_y;
float offset_z;
} mmc5603nj_cal_data_t;
/**
* @brief 初始化MMC5603NJ传感器
@ -60,7 +66,7 @@ void mmc5603nj_set_data_rate(uint8_t rate);
/**
* @brief 启用连续测量模式
*/
void mmc5603nj_enable_continuous_mode(void);
void mmc5603nj_enable_continuous_mode(uint8_t rate);
/**
* @brief 禁用连续测量模式

View File

@ -1182,15 +1182,31 @@ unsigned char get_calibration_state(void){
// Kp: 比例增益,决定了加速度计数据校正陀螺仪的权重。值越大,对加速度计的响应越快,但对运动加速度更敏感。
// Ki: 积分增益,决定了用于校正陀螺仪静态漂移的权重。
// Q_dt: 采样时间间隔单位这里是10ms (0.01s)对应100Hz的采样率。
#define HAVE_MAG 1
#if HAVE_MAG == 0
// -- 无地磁 --
const float Kp = 2.0f;
const float Ki = 0.005f;
const float Q_dt = 0.01f;
#else
// -- 有地磁 --
const float Kp = 0.3f;
const float Ki = 0.001f;
const float Q_dt = 0.01f;
#endif
// --- 状态变量 ---
// 四元数 (Quaternion),表示当前的姿态。初始化为 (1, 0, 0, 0),代表初始姿态为水平。
static float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f;
// 陀螺仪积分误差项,用于补偿静态漂移
static float exInt = 0.0f, eyInt = 0.0f, ezInt = 0.0f;
// 磁力计校准相关的变量
float Error_Mag_f[3] = {0.0f, 0.0f, 0.0f};
double Sum_Avg_Mag_f[3] = {0.0, 0.0, 0.0}; // 使用double避免累加过程中的精度损失
// 临时存储校准后数据的数组
signed short Temp_AccGyro[6] = {0};
float Temp_Mag[3] = {0.0f, 0.0f, 0.0f};
// =================================================================================================
@ -1207,15 +1223,237 @@ static float exInt = 0.0f, eyInt = 0.0f, ezInt = 0.0f;
* @param calibration_en 传入外部校准使能标志。如果为0则强制认为已经校准完成。
* @param acc_gyro_input 传入和传出包含6轴原始数据的数组指针顺序为 [ACC_X, ACC_Y, ACC_Z, GYR_X, GYR_Y, GYR_Z]。该函数会对其进行原地修改,填充为校准后的数据。
* @param Angle_output 传出:滤波后的结果,顺序为 [Pitch, Roll, Yaw],单位为度。
* @param mag_data_input 传入:指向包含三轴磁力计数据的结构体指针。数据单位应为高斯(Gauss)。已经8面校准过的数据
* @param yaw_rst 传入Yaw轴重置标志。如果为1则将整个姿态滤波器状态重置。
*
* @param quaternion_output 传出, 四元数,用于后续重力分量的去除计算
* @return
* - 0: 正在进行静态校准。
* - 1: 姿态角计算成功。
* - 2: 校准未完成,无法进行计算。
*/
unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst, float *quaternion_output)
unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, const mmc5603nj_mag_data_t* _mag_data_input, unsigned char yaw_rst, float *quaternion_output)
{
#if 1 //有地磁置1
unsigned char sl_i = 0;
// 如果外部强制禁用校准则将标志位置1
if (calibration_en == 0) {
SL_SC7U22_Error_Flag = 1;
}
// ====================== 坐标对齐 ======================
mmc5603nj_mag_data_t mag_data_input;
mag_data_input.x = - _mag_data_input->x;
mag_data_input.y = - _mag_data_input->y;
mag_data_input.z = _mag_data_input->z;
// ================================================================
// =================================================================================
// 静态校准
// ---------------------------------------------------------------------------------
if (SL_SC7U22_Error_Flag == 0) {
unsigned short acc_gyro_delta[2];
acc_gyro_delta[0] = 0;
acc_gyro_delta[1] = 0;
for (sl_i = 0; sl_i < 3; sl_i++) {
acc_gyro_delta[0] += SL_GetAbsShort(acc_gyro_input[sl_i] - Temp_Accgyro[sl_i]);
acc_gyro_delta[1] += SL_GetAbsShort(acc_gyro_input[3 + sl_i] - Temp_Accgyro[3 + sl_i]);
}
for (sl_i = 0; sl_i < 6; sl_i++) {
Temp_Accgyro[sl_i] = acc_gyro_input[sl_i];
}
#if (ACC_RANGE == 2)
if ((acc_gyro_delta[0] / 8 < 160) && (acc_gyro_delta[1] < 40) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 16384) < 3000)) {
#elif (ACC_RANGE == 4)
if ((acc_gyro_delta[0] / 8 < 160) && (acc_gyro_delta[1] < 40) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 8192) < 3000)) {
#elif (ACC_RANGE == 8)
if ((acc_gyro_delta[0] / 8 < 160) && (acc_gyro_delta[1] < 40) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 4096) < 3000)) {
#elif (ACC_RANGE == 16)
if ((acc_gyro_delta[0] / 8 < 160) && (acc_gyro_delta[1] < 40) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 2048) < 3000)) {
#endif
if (SL_SC7U22_Error_cnt < 200) SL_SC7U22_Error_cnt++;
} else {
SL_SC7U22_Error_cnt = 0;
}
if (SL_SC7U22_Error_cnt > 190) {
//累加6轴数据
for (sl_i = 0; sl_i < 6; sl_i++) Sum_Avg_Accgyro[sl_i] += acc_gyro_input[sl_i];
Sum_Avg_Mag_f[0] += mag_data_input.x;
Sum_Avg_Mag_f[1] += mag_data_input.y;
Sum_Avg_Mag_f[2] += mag_data_input.z;
SL_SC7U22_Error_cnt2++;
if (SL_SC7U22_Error_cnt2 > 49) {
SL_SC7U22_Error_Flag = 1;
SL_SC7U22_Error_cnt2 = 0;
SL_SC7U22_Error_cnt = 0;
//6轴偏置
for (sl_i = 0; sl_i < 6; sl_i++) Sum_Avg_Accgyro[sl_i] = Sum_Avg_Accgyro[sl_i] / 50;
Error_Accgyro[0] = 0 - Sum_Avg_Accgyro[0];
Error_Accgyro[1] = 0 - Sum_Avg_Accgyro[1];
#if ACC_RANGE==2
Error_Accgyro[2] = 16384 - Sum_Avg_Accgyro[2];
#elif ACC_RANGE==4
Error_Accgyro[2] = 8192 - Sum_Avg_Accgyro[2];
#elif ACC_RANGE==8
Error_Accgyro[2] = 4096 - Sum_Avg_Accgyro[2];
#elif ACC_RANGE==16
Error_Accgyro[2] = 2048 - Sum_Avg_Accgyro[2];
#endif
Error_Accgyro[3] = 0 - Sum_Avg_Accgyro[3];
Error_Accgyro[4] = 0 - Sum_Avg_Accgyro[4];
Error_Accgyro[5] = 0 - Sum_Avg_Accgyro[5];
// //磁力计偏置 -- 不在这弄,在磁力计初始化的时候开始
// Sum_Avg_Mag_f[0] /= 50.0;
// Sum_Avg_Mag_f[1] /= 50.0;
// Sum_Avg_Mag_f[2] /= 50.0;
// Error_Mag_f[0] = 0.0f - (float)Sum_Avg_Mag_f[0];
// Error_Mag_f[1] = 0.0f - (float)Sum_Avg_Mag_f[1];
// Error_Mag_f[2] = 0.0f - (float)Sum_Avg_Mag_f[2];
// xlog("AVG_Recode AX:%d,AY:%d,AZ:%d,GX:%d,GY:%d,GZ:%d\r\n", Sum_Avg_Accgyro[0], Sum_Avg_Accgyro[1], Sum_Avg_Accgyro[2], Sum_Avg_Accgyro[3], Sum_Avg_Accgyro[4], Sum_Avg_Accgyro[5]);
// xlog("Error_Recode AX:%d,AY:%d,AZ:%d,GX:%d,GY:%d,GZ:%d\r\n", Error_Accgyro[0], Error_Accgyro[1], Error_Accgyro[2], Error_Accgyro[3], Error_Accgyro[4], Error_Accgyro[5]);
}
} else {
SL_SC7U22_Error_cnt2 = 0;
for (sl_i = 0; sl_i < 6; sl_i++) Sum_Avg_Accgyro[sl_i] = 0;
// Sum_Avg_Mag_f[0] = 0.0;
// Sum_Avg_Mag_f[1] = 0.0;
// Sum_Avg_Mag_f[2] = 0.0;
}
return 0; // 返回0表示正在校准
}
// =================================================================================
// 姿态解算 (Mahony AHRS)
// ---------------------------------------------------------------------------------
if (SL_SC7U22_Error_Flag == 1) { // 确认已经校准完成
// --- Yaw轴/姿态重置 ---
// 注意重置yaw会重置整个姿态滤波器使设备回到初始水平姿态
if (yaw_rst == 1) {
q0 = 1.0f; q1 = 0.0f; q2 = 0.0f; q3 = 0.0f;
exInt = 0.0f; eyInt = 0.0f; ezInt = 0.0f;
}
// --- 数据预处理 ---
// 应用零点偏移补偿
for (sl_i = 0; sl_i < 6; sl_i++) {
Temp_Accgyro[sl_i] = acc_gyro_input[sl_i] + Error_Accgyro[sl_i];
}
// Temp_Mag[0] = mag_data_input.x + Error_Mag_f[0];
// Temp_Mag[1] = mag_data_input.y + Error_Mag_f[1];
// Temp_Mag[2] = mag_data_input.z + Error_Mag_f[2];
Temp_Mag[0] = mag_data_input.x;
Temp_Mag[1] = mag_data_input.y;
Temp_Mag[2] = mag_data_input.z;
// 将校准后的数据写回输入数组
#if 1
for (sl_i = 0; sl_i < 6; sl_i++) {
acc_gyro_input[sl_i] = Temp_Accgyro[sl_i];
}
#endif
// 获取校准后的数据
float ax = (float)Temp_Accgyro[0];
float ay = (float)Temp_Accgyro[1];
float az = (float)Temp_Accgyro[2];
// 将陀螺仪数据从 LSB 转换为弧度/秒 (rad/s)
// 转换系数 0.061 ≈ 2000dps / 32768 LSB; PI/180 ≈ 0.01745
float gx = (float)Temp_Accgyro[3] * 0.061f * 0.0174533f; // Roll rate
float gy = (float)Temp_Accgyro[4] * 0.061f * 0.0174533f; // Pitch rate
float gz = (float)Temp_Accgyro[5] * 0.061f * 0.0174533f; // Yaw rate
float mx = Temp_Mag[0];
float my = Temp_Mag[1];
float mz = Temp_Mag[2];
// --- Mahony算法核心 ---
float norm;
float q0q0 = q0 * q0;
float q0q1 = q0 * q1;
float q0q2 = q0 * q2;
float q0q3 = q0 * q3;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q3q3 = q3 * q3;
float hx, hy, bx, bz;
float vx, vy, vz, wx, wy, wz;
float ex, ey, ez;
// 归一化加速度计测量值,得到单位重力向量
norm = sqrtf(ax * ax + ay * ay + az * az);
if (norm > 0.0f) { ax /= norm; ay /= norm; az /= norm; }
else { return 1; }
norm = sqrtf(mx * mx + my * my + mz * mz);
if (norm > 0.0f) { mx /= norm; my /= norm; mz /= norm; }
// 根据当前姿态(四元数)估计重力向量的方向
vx = 2.0f * (q1q3 - q0q2);
vy = 2.0f * (q0q1 + q2q3);
vz = q0q0 - q1q1 - q2q2 + q3q3;
// 计算磁场误差 (倾斜补偿)
hx = 2.0f * mx * (0.5f - q2q2 - q3q3) + 2.0f * my * (q1q2 - q0q3) + 2.0f * mz * (q1q3 + q0q2);
hy = 2.0f * mx * (q1q2 + q0q3) + 2.0f * my * (0.5f - q1q1 - q3q3) + 2.0f * mz * (q2q3 - q0q1);
bx = sqrtf(hx * hx + hy * hy);
bz = 2.0f * mx * (q1q3 - q0q2) + 2.0f * my * (q2q3 + q0q1) + 2.0f * mz * (0.5f - q1q1 - q2q2);
wx = 2.0f * bx * (0.5f - q2q2 - q3q3) + 2.0f * bz * (q1q3 - q0q2);
wy = 2.0f * bx * (q1q2 - q0q3) + 2.0f * bz * (q0q1 + q2q3);
wz = 2.0f * bx * (q1q3 + q0q2) + 2.0f * bz * (0.5f - q1q1 - q2q2);
// 合并重力和磁场误差
ex = (ay * vz - az * vy) + (my * wz - mz * wy);
ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
// PI控制器
if (Ki > 0.0f) {
exInt += ex * Ki * Q_dt;
eyInt += ey * Ki * Q_dt;
ezInt += ez * Ki * Q_dt;
}
gx += Kp * ex + exInt;
gy += Kp * ey + eyInt;
gz += Kp * ez + ezInt;
// 使用校正后的角速度更新四元数 (一阶毕卡法)
q0 += (-q1 * gx - q2 * gy - q3 * gz) * 0.5f * Q_dt;
q1 += ( q0 * gx + q2 * gz - q3 * gy) * 0.5f * Q_dt;
q2 += ( q0 * gy - q1 * gz + q3 * gx) * 0.5f * Q_dt;
q3 += ( q0 * gz + q1 * gy - q2 * gx) * 0.5f * Q_dt;
// 归一化四元数,保持其单位长度
norm = sqrtf(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 /= norm; q1 /= norm; q2 /= norm; q3 /= norm;
// --- 将四元数转换为欧拉角 (Pitch, Roll, Yaw) ---
// Pitch (绕Y轴旋转)
Angle_output[0] = asinf(-2.0f * (q1 * q3 - q0 * q2)) * 57.29578f;
// Roll (绕X轴旋转)
Angle_output[1] = atan2f(2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3) * 57.29578f;
// Yaw (绕Z轴旋转)
Angle_output[2] = atan2f(2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3) * 57.29578f;
//将四元数传出去
if (quaternion_output != NULL) {
quaternion_output[0] = q0; // w
quaternion_output[1] = q1; // x
quaternion_output[2] = q2; // y
quaternion_output[3] = q3; // z
}
return 1; // 返回1表示计算成功
}
return 2; // 校准未完成,返回错误状态
#else
unsigned char sl_i = 0;
// 如果外部强制禁用校准则将标志位置1
@ -1248,6 +1486,7 @@ unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed shor
#endif
if (SL_SC7U22_Error_cnt < 200) SL_SC7U22_Error_cnt++;
} else {
// printf("error: The calibration process has undergone a shift.\n");
SL_SC7U22_Error_cnt = 0;
}
if (SL_SC7U22_Error_cnt > 190) {
@ -1388,6 +1627,7 @@ unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed shor
}
return 2; // 校准未完成,返回错误状态
#endif
}
#endif

View File

@ -9,6 +9,7 @@ Copyright (c) 2022 Silan MEMS. All Rights Reserved.
#include "gSensor/gSensor_manage.h"
#include "printf.h"
#include "MMC56.h"
//是否使能串口打印调试
#define SL_Sensor_Algo_Release_Enable 0x00
@ -132,7 +133,7 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en,signed short *
unsigned char Original_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
unsigned char SIX_SL_SC7U22_Angle_Output(unsigned char auto_calib_start, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst, float *quaternion_output);
unsigned char Q_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, const mmc5603nj_mag_data_t *mag_data_input, unsigned char yaw_rst, float *quaternion_output);
unsigned char get_calibration_state(void);
/**寄存器宏定义*******************************/
#define SC7U22_WHO_AM_I 0x01

View File

@ -45,6 +45,10 @@
#include "default_event_handler.h"
#include "debug.h"
#include "system/event.h"
#include "./ano/ano_protocol.h"
#include "./sensor/MMC56.h"
#include "./sensor/BMP280.h"
#include "./sensor/AK8963.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
//宏定义
#define LOG_TAG_CONST EARPHONE
@ -199,18 +203,40 @@ void le_user_app_event_handler(struct sys_event* event){
if(event->u.app.buffer[2] == 0x01){ //后面的数据长度 1
switch (event->u.app.buffer[3]){
case 0x01:
extern void start_detection(void);
start_detection();
char* send_tmp = "start_detection\n";
char* send_start = "will start after 5 seconds\n";
send_data_to_ble_client(send_start,strlen(send_start));
if (mmc5603nj_init() != 0) {
xlog("MMC5603NJ initialization failed!\n");
char* send_error = "calibration error\n";
send_data_to_ble_client(send_error,strlen(send_error));
}
xlog("MMC5603NJ PID: 0x%02X\n", mmc5603nj_get_pid());
char* send_tmp = "8th calibration completed\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x02:
extern void create_process(u16* pid,char* name, void *priv, void (*func)(void *priv), u32 msec);
extern void sensor_measure(void);
static int test_id;
SL_SC7U22_Config();
create_process(&test_id, "test",NULL, sensor_measure, 10);
send_tmp = "start_detection\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x03:
extern void start_detection(void);
start_detection();
send_tmp = "start_detection\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x04:
extern void stop_detection(void);
stop_detection();
send_tmp = "stop_detection\n";
send_data_to_ble_client(send_tmp,strlen(send_tmp));
break;
case 0x03:
case 0x05:
extern void clear_speed(void);
clear_speed();
send_tmp = "Reset speed and distances to zero\n";

View File

@ -188,12 +188,18 @@ void hw_iic_stop(hw_iic_dev iic)
u8 hw_iic_tx_byte(hw_iic_dev iic, u8 byte)
{
// printf("====debug1=======\n");
u8 id = iic_get_id(iic);
// printf("====debug2=======\n");
iic_dir_out(iic_regs[id]);
// printf("====debug3=======\n");
iic_buf_reg(iic_regs[id]) = byte;
// printf("====debug4=======\n");
iic_cfg_done(iic_regs[id]);
// printf("====debug5=======\n");
/* putchar('a'); */
while (!iic_pnd(iic_regs[id]));
// printf("====debug6=======\n");
iic_pnd_clr(iic_regs[id]);
/* putchar('b'); */
return iic_send_is_ack(iic_regs[id]);