This commit is contained in:
lmx
2025-11-04 14:40:55 +08:00
parent 671730a351
commit 6be3cd1070
28 changed files with 175432 additions and 172997 deletions

View File

@ -20,6 +20,8 @@
"bluetooth.h": "c",
"SCU722.C": "cpp",
"math.h": "c",
"avctp_user.h": "c"
"avctp_user.h": "c",
"string.h": "c",
"dev_manager.h": "c"
}
}

View File

@ -0,0 +1,153 @@
#include "skiing_tracker.h"
#include <math.h> // 使用 sqrtf, fabsf, atan2f
#include <string.h> // 使用 memset
// ======================= 用户可配置参数 =======================
// IMU的采样率 (Hz)
#define SAMPLE_RATE 100.0f
#define DT (1.0f / SAMPLE_RATE)
// 传感器灵敏度配置 (必须与硬件配置匹配)
// 加速度计量程: ±8G -> 1G = 32768 / 8 = 4096 LSB
#define ACCEL_SENSITIVITY 4096.0f // LSB/g
#define GRAVITY_MSS 9.80665f // 标准重力加速度 (m/s^2)
// 陀螺仪灵敏度 (2000dps)
#define GYRO_SENSITIVITY 16.4f // LSB/(deg/s)
// 状态检测阈值
#define MOTION_ACCEL_THRESHOLD (ACCEL_SENSITIVITY * 0.3f) // 加速度变化超过0.3g认为在运动
#define MOTION_GYRO_THRESHOLD (GYRO_SENSITIVITY * 90.0f) // 角速度超过xx dps认为在运动
#define STILL_SAMPLES_FOR_CALIBRATION 100 // 连续静止1秒 (100个点) 开始校准
#define CALIBRATION_SAMPLE_COUNT 50 // 用于平均的校准样本数 (0.5秒)
#define MOTION_SAMPLES_TO_START_SKIING 10 // 连续运动0.1秒开始滑行
#define STILL_SAMPLES_TO_STOP_SKIING 20 // 连续静止0.2秒停止滑行
// 角度转弧度
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define RAD_TO_DEG(rad) ((rad) * 180.0f / M_PI)
// ======================= 内部实现 =======================
void SkiingTracker_Init(SkiingTracker* tracker) {
memset(tracker, 0, sizeof(SkiingTracker));
tracker->state = STATE_UNCALIBRATED;
}
// 简单的低通滤波器
static float low_pass_filter(float new_input, float prev_output, float alpha) {
return alpha * new_input + (1.0f - alpha) * prev_output;
}
static void reset_calibration(SkiingTracker* tracker) {
tracker->calib_samples_count = 0;
tracker->calib_acc_sum[0] = 0;
tracker->calib_acc_sum[1] = 0;
tracker->calib_acc_sum[2] = 0;
}
// 核心更新函数
void SkiingTracker_Update(SkiingTracker* tracker, signed short* raw_accel, signed short* raw_gyro) {
// 运动状态检测
// 使用原始数据进行判断,避免校准误差影响
float acc_mag = sqrtf((float)raw_accel[0] * raw_accel[0] + (float)raw_accel[1] * raw_accel[1] + (float)raw_accel[2] * raw_accel[2]);
float gyro_mag = sqrtf((float)raw_gyro[0] * raw_gyro[0] + (float)raw_gyro[1] * raw_gyro[1] + (float)raw_gyro[2] * raw_gyro[2]);
int is_moving = (fabsf(acc_mag - ACCEL_SENSITIVITY) > MOTION_ACCEL_THRESHOLD) || (gyro_mag > MOTION_GYRO_THRESHOLD);
if (is_moving) {
tracker->still_counter = 0;
tracker->motion_counter++;
printf("===motion count===\n");
} else {
tracker->motion_counter = 0;
tracker->still_counter++;
printf("===still count===\n");
}
// 2. 状态机处理
switch (tracker->state) {
case STATE_UNCALIBRATED:
if (tracker->still_counter > STILL_SAMPLES_FOR_CALIBRATION) {
tracker->state = STATE_CALIBRATING;
reset_calibration(tracker);
}
break;
case STATE_CALIBRATING:
if (is_moving) { // 如果在校准时移动了,则校准失败,返回未校准状态
tracker->state = STATE_UNCALIBRATED;
reset_calibration(tracker);
break;
}
// 累加采样数据
tracker->calib_acc_sum[0] += raw_accel[0];
tracker->calib_acc_sum[1] += raw_accel[1];
tracker->calib_acc_sum[2] += raw_accel[2];
tracker->calib_samples_count++;
if (tracker->calib_samples_count >= CALIBRATION_SAMPLE_COUNT) {
// 校准完成,计算平均重力矢量
tracker->static_gravity[0] = (short)(tracker->calib_acc_sum[0] / CALIBRATION_SAMPLE_COUNT);
tracker->static_gravity[1] = (short)(tracker->calib_acc_sum[1] / CALIBRATION_SAMPLE_COUNT);
tracker->static_gravity[2] = (short)(tracker->calib_acc_sum[2] / CALIBRATION_SAMPLE_COUNT);
// 计算坡度(可选,用于显示)
float horiz_g = sqrtf((float)tracker->static_gravity[0] * tracker->static_gravity[0] + (float)tracker->static_gravity[1] * tracker->static_gravity[1]);
float vert_g = fabsf((float)tracker->static_gravity[2]);
tracker->slope_angle_deg = RAD_TO_DEG(atan2f(horiz_g, vert_g));
tracker->state = STATE_READY;
}
break;
case STATE_READY:
if (tracker->motion_counter > MOTION_SAMPLES_TO_START_SKIING) {
tracker->state = STATE_SKIING;
}
break;
case STATE_SKIING:
if (tracker->still_counter > STILL_SAMPLES_TO_STOP_SKIING) {
tracker->state = STATE_STOPPED;
tracker->velocity = 0.0f; // 零速更新
tracker->forward_accel = 0.0f;
break;
}
// 计算线性加速度 (重力抵消)
// 假设传感器的X轴指向滑雪板前进方向
long linear_accel_x_lsb = (long)raw_accel[0] - tracker->static_gravity[0];
// 转换为 m/s^2
float current_accel_mss = (float)linear_accel_x_lsb / ACCEL_SENSITIVITY * GRAVITY_MSS;
// 低通滤波以平滑加速度
tracker->forward_accel = low_pass_filter(current_accel_mss, tracker->forward_accel, 0.3f);
// 积分计算速度和距离 (梯形积分)
float prev_velocity = tracker->velocity;
tracker->velocity += tracker->forward_accel * DT;
// 物理约束:速度不能为负(不能往坡上滑)
if (tracker->velocity < 0) {
tracker->velocity = 0;
}
tracker->distance += (prev_velocity + tracker->velocity) / 2.0f * DT;
break;
case STATE_STOPPED:
// 在停止状态下,如果再次检测到运动,则重新进入滑行状态
if (tracker->motion_counter > MOTION_SAMPLES_TO_START_SKIING) {
tracker->state = STATE_SKIING;
}
// 如果长时间静止,返回未校准状态,以应对更换雪道的情况
// if (tracker->still_counter > 3000) { // e.g., 30 seconds
// tracker->state = STATE_UNCALIBRATED;
// }
break;
}
}

View File

@ -0,0 +1,53 @@
#ifndef SKIING_TRACKER_H
#define SKIING_TRACKER_H
// 定义滑雪者的运动状态
typedef enum {
STATE_UNCALIBRATED, // 未校准,等待在斜坡上静止
STATE_CALIBRATING, // 正在校准重力矢量
STATE_READY, // 校准完成,准备滑行
STATE_SKIING, // 正在滑行
STATE_STOPPED // 在斜坡上中途停止
} MotionState;
// 存储所有运动学数据
typedef struct {
// 最终输出
float velocity; // 沿斜坡方向的速度 (m/s)
float distance; // 沿斜坡方向的滑行距离 (m)
float slope_angle_deg; // 动态计算出的坡度 (度)
// 内部状态变量
MotionState state; // 当前运动状态
// 校准相关
short static_gravity[3]; // 校准后得到的静态重力矢量 (LSB)
long calib_acc_sum[3]; // 用于计算平均值的累加器
int calib_samples_count; // 校准采样计数
// 运动检测
int motion_counter;
int still_counter; // 静止状态计数器
// 物理量
float forward_accel; // 沿滑行方向的加速度 (m/s^2)
} SkiingTracker;
/**
* @brief 初始化滑雪追踪器
* @param tracker 指向 SkiingTracker 实例的指针
*/
void SkiingTracker_Init(SkiingTracker* tracker);
/**
* @brief 处理IMU数据自动校准并计算速度和距离
* @details 这是核心处理函数应在每次获取新的IMU数据后调用。
*
* @param tracker 指向 SkiingTracker 实例的指针
* @param raw_accel 未经校准的原始加速度数据 [X, Y, Z],单位是 LSB
* @param raw_gyro 未经校准的原始陀螺仪数据 [X, Y, Z],单位是 LSB
*/
void SkiingTracker_Update(SkiingTracker* tracker, signed short* raw_accel, signed short* raw_gyro);
#endif // SKIING_TRACKER_H

View File

@ -0,0 +1,207 @@
#include "skiing_tracker.h"
#include <math.h> // 使用 sqrtf, fabsf, atan2f
#include <string.h> // 使用 memset
#include "system/includes.h"
#include "btstack/btstack_task.h"
#include "app_config.h"
#include "app_action.h"
#include "asm/pwm_led.h"
#include "tone_player.h"
#include "ui_manage.h"
#include "gpio.h"
#include "app_main.h"
#include "asm/charge.h"
#include "update.h"
#include "app_power_manage.h"
#include "audio_config.h"
#include "app_charge.h"
#include "bt_profile_cfg.h"
#include "dev_manager/dev_manager.h"
#include "update_loader_download.h"
#include "../sensor/LIS2DH12.h"
#include "../buffer/circle_buffer.h"
#include "btstack/avctp_user.h"
#define ENABLE_XLOG 1
#ifdef xlog
#undef xlog
#endif
#if ENABLE_XLOG
#define xlog(format, ...) printf("[XT:%s] " format, __func__, ##__VA_ARGS__)
#else
#define xlog(format, ...) ((void)0)
#endif
// --- 算法核心参数 ---
#define SAMPLE_RATE_HZ 100 // 传感器采样率100Hz
#define DT (1.0f / SAMPLE_RATE_HZ) // 每次处理的时间间隔
#define TASK_PERIOD_MS (1000 / SAMPLE_RATE_HZ) // 任务执行周期, 10ms for 100Hz
Skiing_State_t skiing_state = {0};
// --- 用于BLE发送的数据包结构 ---
typedef struct {
float speed_ms;
float distance_m;
} sensor_ble_packet_t;
/**
* @brief 处理滑雪数据,计算速度和距离
* @param acc_gyro_input 传入6轴原始数据 [AX, AY, AZ, GX, GY, GZ]
* @param dt 传入两次调用之间的时间间隔例如0.01s for 100Hz
* @retval None
*/
void SL_SC7U22_Process_Skiing_Data(signed short* acc_gyro_input, float dt)
{
// =================================================================================
// 步骤 1: 姿态解算和静态校准
// =================================================================================
float angles_deg[3] = {0}; // [Pitch, Roll, Yaw] in degrees
// 调用您现有的姿态解算函数
// 假设 calibration_en = 1, yaw_rst = 0
unsigned char angle_status = SL_SC7U22_Angle_Output(1, acc_gyro_input, angles_deg, 0);
if (angle_status != 1) {
// 如果校准未完成或计算失败,则不进行后续处理
skiing_state.is_calibrated = 0;
return;
}
skiing_state.is_calibrated = 1;
// 将角度转换为弧度,用于后续三角函数计算
skiing_state.angles_rad[0] = angles_deg[0] * DEG_TO_RAD; // Pitch
skiing_state.angles_rad[1] = angles_deg[1] * DEG_TO_RAD; // Roll
skiing_state.angles_rad[2] = angles_deg[2] * DEG_TO_RAD; // Yaw
// =================================================================================
// 步骤 2: 检测滑雪者是否静止 (这是漂移抑制的关键)
// =================================================================================
// 静止检测逻辑:
// 1. 加速度的模长约等于1g
// 2. 角速度的模长非常小
long long accel_mag_sq = (long long)acc_gyro_input[0] * acc_gyro_input[0] +
(long long)acc_gyro_input[1] * acc_gyro_input[1] +
(long long)acc_gyro_input[2] * acc_gyro_input[2];
long long gyro_mag_sq = (long long)acc_gyro_input[3] * acc_gyro_input[3] +
(long long)acc_gyro_input[4] * acc_gyro_input[4] +
(long long)acc_gyro_input[5] * acc_gyro_input[5];
// --- 这些阈值需要根据实际测试进行精细调整 ---
const float G_SQ_UPPER = (G_ACCEL * 1.05f) * (G_ACCEL * 1.05f); // (1.05g)^2
const float G_SQ_LOWER = (G_ACCEL * 0.95f) * (G_ACCEL * 0.95f); // (0.95g)^2
const long long GYRO_MAG_SQ_THRESH = 300; // 对应约 1 deg/s 的抖动
const int STILLNESS_DURATION = 100; // 需要持续100个采样点1秒 @ 100Hz才确认为静止
if (accel_mag_sq > G_SQ_LOWER && accel_mag_sq < G_SQ_UPPER && gyro_mag_sq < GYRO_MAG_SQ_THRESH) {
if (skiing_state.stillness_counter < STILLNESS_DURATION) {
skiing_state.stillness_counter++;
}
} else {
skiing_state.stillness_counter = 0;
skiing_state.is_still = 0;
}
if (skiing_state.stillness_counter >= STILLNESS_DURATION) {
skiing_state.is_still = 1;
}
// 如果检测到静止,则重置速度(零速更新)
if (skiing_state.is_still) {
skiing_state.velocity[0] = 0.0f;
skiing_state.velocity[1] = 0.0f;
skiing_state.velocity[2] = 0.0f;
skiing_state.speed = 0.0f;
return; // 静止时,不需要进行积分
}
// =================================================================================
// 步骤 3: 坐标转换与重力补偿
// =================================================================================
float accel_body_g[3]; // 机体坐标系下的加速度,单位 g
accel_body_g[0] = (float)acc_gyro_input[0] / G_ACCEL;
accel_body_g[1] = (float)acc_gyro_input[1] / G_ACCEL;
accel_body_g[2] = (float)acc_gyro_input[2] / G_ACCEL;
// 使用旋转矩阵将机体坐标系加速度(Ab)转换到世界坐标系(An)
// An = C_b^n * Ab
// C_b^n 是从机体(b)到导航(n)的旋转矩阵,由姿态角决定
float sp = sinf(skiing_state.angles_rad[0]); // sin(pitch)
float cp = cosf(skiing_state.angles_rad[0]); // cos(pitch)
float sr = sinf(skiing_state.angles_rad[1]); // sin(roll)
float cr = cosf(skiing_state.angles_rad[1]); // cos(roll)
float sy = sinf(skiing_state.angles_rad[2]); // sin(yaw)
float cy = cosf(skiing_state.angles_rad[2]); // cos(yaw)
// 世界坐标系下的加速度单位g此时仍包含重力
float accel_nav_g[3];
accel_nav_g[0] = cy*cr*accel_body_g[0] + (cy*sp*sr - sy*cr)*accel_body_g[1] + (cy*sp*cr + sy*sr)*accel_body_g[2];
accel_nav_g[1] = sy*cr*accel_body_g[0] + (sy*sp*sr + cy*cr)*accel_body_g[1] + (sy*sp*cr - cy*sr)*accel_body_g[2];
accel_nav_g[2] = -sr*accel_body_g[0] + cp*sr*accel_body_g[1] + cp*cr*accel_body_g[2];
// 减去重力分量。在世界坐标系下重力总是指向Z轴负方向假设Z轴向上大小为1g
// 如果您的世界坐标系Z轴向下则应为 accel_nav_g[2] -= 1.0f;
accel_nav_g[2] += 1.0f;
// 将线性加速度从 g 转换为 m/s^2
float linear_accel_ms2[3];
const float G_IN_MS2 = 9.80665f;
linear_accel_ms2[0] = accel_nav_g[0] * G_IN_MS2;
linear_accel_ms2[1] = accel_nav_g[1] * G_IN_MS2;
linear_accel_ms2[2] = accel_nav_g[2] * G_IN_MS2;
// =================================================================================
// 步骤 4: 积分计算速度和距离
// =================================================================================
// 积分得到速度
skiing_state.velocity[0] += linear_accel_ms2[0] * dt;
skiing_state.velocity[1] += linear_accel_ms2[1] * dt;
skiing_state.velocity[2] += linear_accel_ms2[2] * dt;
// 计算标量速度
skiing_state.speed = sqrtf(skiing_state.velocity[0] * skiing_state.velocity[0] +
skiing_state.velocity[1] * skiing_state.velocity[1] +
skiing_state.velocity[2] * skiing_state.velocity[2]);
// 积分得到距离
skiing_state.distance += skiing_state.speed * dt;
}
// 传感器数据采集与处理任务
void sensor_processing_task(signed short * acc_data_buf,signed short * gyr_data_buf) {
signed short acc_gyro_data[6];
acc_gyro_data[0] = acc_data_buf[0];
acc_gyro_data[1] = acc_data_buf[1];
acc_gyro_data[2] = acc_data_buf[2];
acc_gyro_data[3] = gyr_data_buf[0];
acc_gyro_data[4] = gyr_data_buf[1];
acc_gyro_data[5] = gyr_data_buf[2];
// 调用滑雪数据处理函数传入原始数据和时间间隔DT
SL_SC7U22_Process_Skiing_Data(acc_gyro_data, DT);
// 处理和输出结果
if (skiing_state.is_calibrated) {
sensor_ble_packet_t packet;
packet.speed_ms = skiing_state.speed;
packet.distance_m = skiing_state.distance;
static int print_counter = 0;
if (++print_counter >= 10) {
print_counter = 0;
xlog(": %.2f m/s, Dist: %.2f m, Still: %d",
packet.speed_ms, packet.distance_m, skiing_state.is_still);
}
} else {
// 如果还未校准完成,可以打印提示信息
static int calib_print_counter = 0;
if (++calib_print_counter >= 100) { // 每1秒打印一次
calib_print_counter = 0;
xlog("Calibrating... Please keep the device still.");
}
}
}

View File

@ -0,0 +1,28 @@
#ifndef SKIING_TRACKER_H
#define SKIING_TRACKER_H
#include "system/includes.h"
// 在您的文件顶部添加
#define G_ACCEL 8192.0f // 传感器在静止时Z轴的理论读数对应1g。根据您的代码±8G量程下1g ≈ 32768 / 4 = 8192 LSB
#define DEG_TO_RAD 0.0174532925f // 角度转弧度 M_PI / 180.0
typedef struct {
// 输出结果
float velocity[3]; // 速度 (m/s) 在世界坐标系 [Vx, Vy, Vz]
float speed; // 标量速度 (m/s)
float distance; // 总滑行距离 (m)
// 内部状态
unsigned char is_calibrated;
unsigned char is_still;
int stillness_counter;
// 姿态
float angles_rad[3]; // 姿态角 [Pitch, Roll, Yaw] in radians
} Skiing_State_t;
void SL_SC7U22_Process_Skiing_Data(signed short* acc_gyro_input, float dt);
#endif // SKIING_TRACKER_H

View File

@ -1,153 +1,213 @@
#include "skiing_tracker.h"
#include <math.h> // 使用 sqrtf, fabsf, atan2f
#include <string.h> // 使用 memset
#include "../sensor/SC7U22.h" // 包含传感器驱动头文件以调用姿态解算函数
#include <math.h>
#include <string.h>
// ======================= 用户可配置参数 =======================
#define G_ACCELERATION 9.81f // 重力加速度 (m/s^2)
#define DEG_TO_RAD (3.14159265f / 180.0f)
// IMU的采样率 (Hz)
#define SAMPLE_RATE 100.0f
#define DT (1.0f / SAMPLE_RATE)
// --- 状态检测阈值 ---
// 判断是否静止的加速度阈值 (m/s^2)。当加速度的模长减去重力后,小于此值,则认为可能静止。
#define STATIC_ACC_THRESHOLD 1.0f
// 连续多少帧满足静止条件才确认为静止状态
#define STATIC_FRAMES_REQUIRED 50 // 累加,超过这个数加速度仍变化不大,说明近似静止
// 传感器灵敏度配置 (必须与硬件配置匹配)
// 加速度计量程: ±8G -> 1G = 32768 / 8 = 4096 LSB
#define ACCEL_SENSITIVITY 4096.0f // LSB/g
#define GRAVITY_MSS 9.80665f // 标准重力加速度 (m/s^2)
// 陀螺仪灵敏度 (2000dps)
#define GYRO_SENSITIVITY 16.4f // LSB/(deg/s)
// 状态检测阈值
#define MOTION_ACCEL_THRESHOLD (ACCEL_SENSITIVITY * 0.3f) // 加速度变化超过0.3g认为在运动
#define MOTION_GYRO_THRESHOLD (GYRO_SENSITIVITY * 90.0f) // 角速度超过xx dps认为在运动
#define STILL_SAMPLES_FOR_CALIBRATION 100 // 连续静止1秒 (100个点) 开始校准
#define CALIBRATION_SAMPLE_COUNT 50 // 用于平均的校准样本数 (0.5秒)
#define MOTION_SAMPLES_TO_START_SKIING 10 // 连续运动0.1秒开始滑行
#define STILL_SAMPLES_TO_STOP_SKIING 20 // 连续静止0.2秒停止滑行
// 角度转弧度
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define RAD_TO_DEG(rad) ((rad) * 180.0f / M_PI)
// ======================= 内部实现 =======================
void SkiingTracker_Init(SkiingTracker* tracker) {
memset(tracker, 0, sizeof(SkiingTracker));
tracker->state = STATE_UNCALIBRATED;
/**
* @brief 初始化滑雪追踪器
*/
void skiing_tracker_init(skiing_tracker_t *tracker)
{
if (!tracker) {
return;
}
memset(tracker, 0, sizeof(skiing_tracker_t));
tracker->state = SKIING_STATE_STATIC; // 初始状态为静止
}
// 简单的低通滤波器
static float low_pass_filter(float new_input, float prev_output, float alpha) {
return alpha * new_input + (1.0f - alpha) * prev_output;
/**
* @brief 将设备坐标系下的加速度转换为世界坐标系
* @param acc_device 设备坐标系下的加速度 [x, y, z]
* @param angle 姿态角 [pitch, roll, yaw],单位: 度
* @param acc_world 输出:世界坐标系下的加速度 [x, y, z]
*/
static void transform_acc_to_world_frame(const float *acc_device, const float *angle, float *acc_world)
{
float pitch = angle[0] * DEG_TO_RAD;
float roll = angle[1] * DEG_TO_RAD;
float cp = cosf(pitch);
float sp = sinf(pitch);
float cr = cosf(roll);
float sr = sinf(roll);
float ax = acc_device[0];
float ay = acc_device[1];
float az = acc_device[2];
// 旋转矩阵简化版仅用Pitch和Roll
// Z-Y-X 顺序旋转
acc_world[0] = cr * ax + sr * sp * ay + sr * cp * az;
acc_world[1] = cp * ay - sp * az;
acc_world[2] = -sr * ax + cr * sp * ay + cr * cp * az;
}
static void reset_calibration(SkiingTracker* tracker) {
tracker->calib_samples_count = 0;
tracker->calib_acc_sum[0] = 0;
tracker->calib_acc_sum[1] = 0;
tracker->calib_acc_sum[2] = 0;
/**
* @brief 更新滑雪状态机
*/
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device)
{
// 计算当前加速度的模长
float acc_magnitude = sqrtf(acc_device[0] * acc_device[0] + acc_device[1] * acc_device[1] + acc_device[2] * acc_device[2]);
// 状态判断逻辑
switch (tracker->state) {
case SKIING_STATE_STATIC:
// 如果加速度变化较大,则切换到滑雪状态
if (fabsf(acc_magnitude - G_ACCELERATION) > STATIC_ACC_THRESHOLD * 2.0f) { // 使用一个更大的阈值来启动
tracker->state = SKIING_STATE_SKIING;
tracker->static_frames_count = 0;
}
break;
case SKIING_STATE_SKIING:
// 检测是否进入静止状态 (零速更新 ZUPT)
if (fabsf(acc_magnitude - G_ACCELERATION) < STATIC_ACC_THRESHOLD) {
tracker->static_frames_count++;
if (tracker->static_frames_count >= STATIC_FRAMES_REQUIRED) {
tracker->state = SKIING_STATE_STATIC;
// 进入静止状态,强制将速度清零以消除漂移
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0.0f;
}
} else {
// 如果在运动,则重置静止计数器
tracker->static_frames_count = 0;
}
break;
// 可以在此添加摔倒等其他状态的判断
case SKIING_STATE_FALLEN:
// TODO: 添加从摔倒状态恢复的逻辑
break;
default:
tracker->state = SKIING_STATE_UNKNOWN;
break;
}
}
// 核心更新函数
void SkiingTracker_Update(SkiingTracker* tracker, signed short* raw_accel, signed short* raw_gyro) {
// 运动状态检测
// 使用原始数据进行判断,避免校准误差影响
float acc_mag = sqrtf((float)raw_accel[0] * raw_accel[0] + (float)raw_accel[1] * raw_accel[1] + (float)raw_accel[2] * raw_accel[2]);
float gyro_mag = sqrtf((float)raw_gyro[0] * raw_gyro[0] + (float)raw_gyro[1] * raw_gyro[1] + (float)raw_gyro[2] * raw_gyro[2]);
int is_moving = (fabsf(acc_mag - ACCEL_SENSITIVITY) > MOTION_ACCEL_THRESHOLD) || (gyro_mag > MOTION_GYRO_THRESHOLD);
if (is_moving) {
tracker->still_counter = 0;
tracker->motion_counter++;
printf("===motion count===\n");
} else {
tracker->motion_counter = 0;
tracker->still_counter++;
printf("===still count===\n");
/**
* @brief 主更新函数
*/
void skiing_tracker_update(skiing_tracker_t *tracker, float *acc, float *angle, float dt)
{
if (!tracker || !acc || !angle || dt <= 0) {
return;
}
// 2. 状态机处理
switch (tracker->state) {
case STATE_UNCALIBRATED:
if (tracker->still_counter > STILL_SAMPLES_FOR_CALIBRATION) {
tracker->state = STATE_CALIBRATING;
reset_calibration(tracker);
}
break;
// 将原始g单位的加速度转换为 m/s^2
float acc_device_ms2[3];
acc_device_ms2[0] = acc[0] * G_ACCELERATION;
acc_device_ms2[1] = acc[1] * G_ACCELERATION;
acc_device_ms2[2] = acc[2] * G_ACCELERATION;
case STATE_CALIBRATING:
if (is_moving) { // 如果在校准时移动了,则校准失败,返回未校准状态
tracker->state = STATE_UNCALIBRATED;
reset_calibration(tracker);
break;
}
// 更新状态机
update_state_machine(tracker, acc_device_ms2);
// 累加采样数据
tracker->calib_acc_sum[0] += raw_accel[0];
tracker->calib_acc_sum[1] += raw_accel[1];
tracker->calib_acc_sum[2] += raw_accel[2];
tracker->calib_samples_count++;
// 只有在滑雪状态下才进行计算
if (tracker->state == SKIING_STATE_SKIING) {
// 坐标系转换: 首先,利用姿态角(Pitch, Roll)将传感器测得的总加速度(运动加速度+重力)
// 从不断变化的“设备坐标系”转换到一个固定的“世界坐标系”。在这个世界坐标系里Z轴永远垂直于地面指向上方。
// 执行坐标系转换
transform_acc_to_world_frame(acc_device_ms2, angle, tracker->acc_world);
// 转换完成后重力就变成了一个恒定的、方向沿Z轴向下的矢量。
if (tracker->calib_samples_count >= CALIBRATION_SAMPLE_COUNT) {
// 校准完成,计算平均重力矢量
tracker->static_gravity[0] = (short)(tracker->calib_acc_sum[0] / CALIBRATION_SAMPLE_COUNT);
tracker->static_gravity[1] = (short)(tracker->calib_acc_sum[1] / CALIBRATION_SAMPLE_COUNT);
tracker->static_gravity[2] = (short)(tracker->calib_acc_sum[2] / CALIBRATION_SAMPLE_COUNT);
// 计算坡度(可选,用于显示)
float horiz_g = sqrtf((float)tracker->static_gravity[0] * tracker->static_gravity[0] + (float)tracker->static_gravity[1] * tracker->static_gravity[1]);
float vert_g = fabsf((float)tracker->static_gravity[2]);
tracker->slope_angle_deg = RAD_TO_DEG(atan2f(horiz_g, vert_g));
// 在世界坐标系下移除Z轴上的重力分量
tracker->acc_world[2] -= G_ACCELERATION;
tracker->state = STATE_READY;
}
break;
// 积分计算速度 (v = v0 + a*t)
tracker->velocity[0] += tracker->acc_world[0] * dt;
tracker->velocity[1] += tracker->acc_world[1] * dt;
tracker->velocity[2] += tracker->acc_world[2] * dt; // 垂直方向速度也计算在内
case STATE_READY:
if (tracker->motion_counter > MOTION_SAMPLES_TO_START_SKIING) {
tracker->state = STATE_SKIING;
}
break;
// 计算当前速率
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
tracker->velocity[1] * tracker->velocity[1] +
tracker->velocity[2] * tracker->velocity[2]);
case STATE_SKIING:
if (tracker->still_counter > STILL_SAMPLES_TO_STOP_SKIING) {
tracker->state = STATE_STOPPED;
tracker->velocity = 0.0f; // 零速更新
tracker->forward_accel = 0.0f;
break;
}
// 积分计算距离 (d = d0 + v*t)
tracker->distance += tracker->speed * dt;
}
}
// 计算线性加速度 (重力抵消)
// 假设传感器的X轴指向滑雪板前进方向
long linear_accel_x_lsb = (long)raw_accel[0] - tracker->static_gravity[0];
// 转换为 m/s^2
float current_accel_mss = (float)linear_accel_x_lsb / ACCEL_SENSITIVITY * GRAVITY_MSS;
// 低通滤波以平滑加速度
tracker->forward_accel = low_pass_filter(current_accel_mss, tracker->forward_accel, 0.3f);
// 积分计算速度和距离 (梯形积分)
float prev_velocity = tracker->velocity;
tracker->velocity += tracker->forward_accel * DT;
// 传感器数据采集与处理任务
void sensor_processing_task(signed short * acc_data_buf,signed short * gyr_data_buf) {
// --- 1. 定义静态变量 ---
static skiing_tracker_t my_skiing_tracker;
static int initialized = 0;
static int calibration_done = 0; // 新增:用于标记一次性静态校准是否完成
// 物理约束:速度不能为负(不能往坡上滑)
if (tracker->velocity < 0) {
tracker->velocity = 0;
}
tracker->distance += (prev_velocity + tracker->velocity) / 2.0f * DT;
break;
static signed short combined_raw_data[6];
static float final_angle_data[3];
static float calibrated_acc_g[3];
case STATE_STOPPED:
// 在停止状态下,如果再次检测到运动,则重新进入滑行状态
if (tracker->motion_counter > MOTION_SAMPLES_TO_START_SKIING) {
tracker->state = STATE_SKIING;
}
// 如果长时间静止,返回未校准状态,以应对更换雪道的情况
// if (tracker->still_counter > 3000) { // e.g., 30 seconds
// tracker->state = STATE_UNCALIBRATED;
// }
break;
// sensor_processing_task的调用频率, dt = 0.001s
const float delta_time = 0.01f;
// --- 2. 初始化 ---
if (!initialized) {
skiing_tracker_init(&my_skiing_tracker);
initialized = 1;
printf("Skiing Tracker Initialized. Waiting for sensor calibration...\n");
}
// --- 3. 数据处理 ---
//合并加速度和陀螺仪数据
memcpy(&combined_raw_data[0], acc_data_buf, 3 * sizeof(signed short));
memcpy(&combined_raw_data[3], gyr_data_buf, 3 * sizeof(signed short));
unsigned char status;
if (get_calibration_state() == 0) { //正在校准
//领票校准
status = SL_SC7U22_Angle_Output(1, combined_raw_data, final_angle_data, 0);
if (status == 1) {
calibration_done = 1;
printf("Sensor calibration successful! Skiing mode is active.\n");
}
} else {
status = SL_SC7U22_Angle_Output(0, combined_raw_data, final_angle_data, 0);
}
// c. 检查姿态解算是否成功
if (status == 1) {
// 将校准后的加速度数据从 LSB (原始值) 转换为 g (重力单位)
// ±8g量程下8192 LSB 对应 1g
calibrated_acc_g[0] = (float)combined_raw_data[0] / 8192.0f;
calibrated_acc_g[1] = (float)combined_raw_data[1] / 8192.0f;
calibrated_acc_g[2] = (float)combined_raw_data[2] / 8192.0f;
skiing_tracker_update(&my_skiing_tracker, calibrated_acc_g, final_angle_data, delta_time);
static count = 0;
if(count < 10){
count++;
return;
}else{
count = 0;
}
printf("State: %d, Speed: %.2f m/s, Distance: %.2f m\n",
my_skiing_tracker.state,
my_skiing_tracker.speed,
my_skiing_tracker.distance);
} else if (status == 0) {
// 传感器正在进行静态校准
// printf("Sensor is calibrating...\n");
} else {
// status == 2, 表示校准失败或发生错误
// printf("Angle calculation error or calibration not finished.\n");
}
}

View File

@ -1,53 +1,41 @@
#ifndef SKIING_TRACKER_H
#define SKIING_TRACKER_H
// 定义滑雪者的运动状态
// 定义滑雪者可能的状态
typedef enum {
STATE_UNCALIBRATED, // 未校准,等待在斜坡上静止
STATE_CALIBRATING, // 正在校准重力矢量
STATE_READY, // 校准完成,准备滑行
STATE_SKIING, // 正在滑行
STATE_STOPPED // 在斜坡上中途停止
} MotionState;
SKIING_STATE_STATIC, // 静止
SKIING_STATE_SKIING, // 正在滑雪
SKIING_STATE_FALLEN, // 已摔倒
SKIING_STATE_UNKNOWN // 未知状态
} skiing_state_t;
// 存储所有运动学数据
// 追踪器数据结构体
typedef struct {
// 最终输出
float velocity; // 沿斜坡方向的速度 (m/s)
float distance; // 沿斜坡方向的滑行距离 (m)
float slope_angle_deg; // 动态计算出的坡度 (度)
float velocity[3]; // 当前速度 (x, y, z),单位: m/s
float distance; // 总滑行距离,单位: m
float speed; // 当前速率 (标量),单位: m/s
skiing_state_t state; // 当前滑雪状态
// 内部状态变量
MotionState state; // 当前运动状态
// 校准相关
short static_gravity[3]; // 校准后得到的静态重力矢量 (LSB)
long calib_acc_sum[3]; // 用于计算平均值的累加器
int calib_samples_count; // 校准采样计数
// 运动检测
int motion_counter;
int still_counter; // 静止状态计数器
// 物理量
float forward_accel; // 沿滑行方向的加速度 (m/s^2)
} SkiingTracker;
// 私有成员,用于内部计算
int static_frames_count; // 用于判断静止状态的帧计数器
float acc_world[3]; // 在世界坐标系下的加速度
} skiing_tracker_t;
/**
* @brief 初始化滑雪追踪器
* @param tracker 指向 SkiingTracker 实例的指针
*
* @param tracker 指向 skiing_tracker_t 结构体的指针
*/
void SkiingTracker_Init(SkiingTracker* tracker);
void skiing_tracker_init(skiing_tracker_t *tracker);
/**
* @brief 处理IMU数据自动校准并计算速度和距离
* @details 这是核心处理函数应在每次获取新的IMU数据后调用。
* @brief 处理传感器数据并更新滑雪状态
*
* @param tracker 指向 SkiingTracker 实例的指针
* @param raw_accel 未经校准的原始加速度数据 [X, Y, Z],单位是 LSB
* @param raw_gyro 未经校准的原始陀螺仪数据 [X, Y, Z],单位是 LSB
* @param tracker 指向 skiing_tracker_t 结构体的指针
* @param acc 校准后的加速度数据 [x, y, z],单位: g (1g = 9.8m/s^2)
* @param angle 姿态角数据 [pitch, roll, yaw],单位: 度
* @param dt 采样时间间隔,单位: 秒 (s)
*/
void SkiingTracker_Update(SkiingTracker* tracker, signed short* raw_accel, signed short* raw_gyro);
void skiing_tracker_update(skiing_tracker_t *tracker, float *acc, float *angle, float dt);
#endif // SKIING_TRACKER_H

View File

@ -57,8 +57,9 @@ static circle_buffer_t sensor_cb;
//--- test ---
static SkiingTracker skiing_data;
static char ble_send_data[50];
// 全局变量
u16 gsensor_id=0;
u16 test_id=0;
//END -- 变量定义
//////////////////////////////////////////////////////////////////////////////////////////////////
@ -68,97 +69,45 @@ void send_sensor_data_task(void) {
// printf("xtell_ble_send\n");
}
void test(){
void sensor_test(){
signed short acc_data_buf[3] = {0};
signed short gyr_data_buf[3] = {0};
// signed short acc_raw[3], gyr_raw[3];
// // 读取原始数据
// SL_SC7U22_RawData_Read(acc_raw, gyr_raw);
// // 将原始数据送入追踪器进行处理
// SkiingTracker_Update(&skiing_data, acc_raw, gyr_raw);
// // c. 打印状态和结果
const char* state_str = "UNKNOWN";
switch(skiing_data.state) {
case STATE_UNCALIBRATED: state_str = "UNCALIBRATED"; break;
case STATE_CALIBRATING: state_str = "CALIBRATING..."; break;
case STATE_READY: state_str = "READY"; break;
case STATE_SKIING: state_str = "SKIING"; break;
case STATE_STOPPED: state_str = "STOPPED"; break;
signed short acc_gyro_input[6] = {0};
float Angle_output[3] = {0};
extern void SL_SC7U22_RawData_Read(signed short * acc_data_buf,signed short * gyr_data_buf);
SL_SC7U22_RawData_Read(acc_data_buf,gyr_data_buf);
acc_gyro_input[0] = acc_data_buf[0];
acc_gyro_input[1] = acc_data_buf[1];
acc_gyro_input[2] = acc_data_buf[2];
acc_gyro_input[3] = gyr_data_buf[0];
acc_gyro_input[4] = gyr_data_buf[1];
acc_gyro_input[5] = gyr_data_buf[2];
// extern unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
// SL_SC7U22_Angle_Output(0,acc_gyro_input,Angle_output,1);
static int count = 0;
if(count >=100){ //1s打印1次
count = 0;
xlog("ACC_X:%d, ACC_Y:%d, ACC_Z:%d, GYR_X:%.d, GYR_Y:%d, GYR_Z:%d",
acc_gyro_input[0],acc_gyro_input[1],acc_gyro_input[2],acc_gyro_input[3],acc_gyro_input[4],acc_gyro_input[5]
);
// xlog("Pitch:%.2f, Roll:%.2f, Yaw:%.2f\n",
// Angle_output[0],Angle_output[1],Angle_output[2]
// );
}
count++;
// // 转换为 km/h
// float velocity_kmh = skiing_data.velocity * 3.6f;
// printf("State: %s, Slope: %.1f deg, Vel: %.2f km/h, Dist: %.2f m\n",
// state_str,
// skiing_data.slope_angle_deg,
// velocity_kmh,
// skiing_data.distance);
signed short acc_raw[3], gyr_raw[3];
// 读取原始数据
SL_SC7U22_RawData_Read(acc_raw, gyr_raw);
// 将原始数据送入追踪器进行处理
SkiingTracker_Update(&skiing_data, acc_raw, gyr_raw);
// 清空发送缓冲区
memset(ble_send_data, 0, sizeof(ble_send_data));
// 准备要填充的数据
// 状态
char state_code = (char)skiing_data.state;
// 坡度 (舍弃小数)
char slope_angle = (char)skiing_data.slope_angle_deg;
// 速度 km/h (舍弃小数)
float velocity_kmh_float = skiing_data.velocity * 3.6f;
// 使用 uint16_t 来存储速度因为它可能超过255
uint16_t velocity_kmh_int = (uint16_t)velocity_kmh_float;
// 距离 (m)
// 使用 uint32_t 来存储距离,因为它会变得很大
uint32_t distance_int = (uint32_t)skiing_data.distance;
// 按顺序填充到 ble_send_data 数组中
int index = 0;
// 字节 0: 状态码 (1 byte)
ble_send_data[index++] = state_code;
// 字节 1: 坡度 (1 byte)
ble_send_data[index++] = slope_angle;
// 字节 2-3: 速度 (2 bytes, 小端模式)
// 将 16 位的速度拆分成两个 8 位的 char
ble_send_data[index++] = (char)(velocity_kmh_int & 0xFF); // 低8位
ble_send_data[index++] = (char)((velocity_kmh_int >> 8) & 0xFF); // 高8位
// 字节 4-7: 距离 (4 bytes, 小端模式)
// 将 32 位的距离拆分成四个 8 位的 char
ble_send_data[index++] = (char)(distance_int & 0xFF); // 最低8位
ble_send_data[index++] = (char)((distance_int >> 8) & 0xFF);
ble_send_data[index++] = (char)((distance_int >> 16) & 0xFF);
ble_send_data[index++] = (char)((distance_int >> 24) & 0xFF); // 最高8位
send_data_to_ble_client(ble_send_data, index);
printf("State: %s, Slope: %.1f deg, Vel: %.2f km/h, Dist: %.2f m\n",
state_str,
skiing_data.slope_angle_deg,
velocity_kmh_float,
skiing_data.distance);
void sensor_processing_task(signed short * acc_data_buf,signed short * gyr_data_buf);
sensor_processing_task(acc_data_buf, gyr_data_buf);
}
u16 test_id=0;
void gsensor_test(){
sys_timer_del(gsensor_id);
}
void xtell_task_create(void){
// int ret = hw_iic_init(0);
@ -181,9 +130,10 @@ void xtell_task_create(void){
//初始化滑雪追踪器
// SkiingTracker_Init(&skiing_data);
// SkiingTracker_Init(&skiing_data);
xlog("SkiingTracker_Init\n");
create_process(&test_id, "test",NULL, sensor_test, 10);
// create_process(&gsensor_id, "gsensor",NULL, gsensor_test, 1000);
create_process(&test_id, "test",NULL, test, 10);
}

View File

@ -4,7 +4,7 @@
#include "os/os_api.h"
#define ENABLE_XLOG 1
#define ENABLE_XLOG 0
#ifdef xlog
#undef xlog
#endif
@ -733,7 +733,8 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short
}
// 判断是否处于静止状态:加速度变化量、陀螺仪变化量、各轴加速度值都在一个很小的范围内
if ((acc_gyro_delta[0] / 8 < 80) && (acc_gyro_delta[1] < 20) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 8192) < 3000)) { //acc<80mg gyro<20 lsb
if ((acc_gyro_delta[0] / 8 < 160) && (acc_gyro_delta[1] < 40) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 8192) < 3000)) { //acc<160mg gyro<40 lsb
// if ((acc_gyro_delta[0] / 8 < 80) && (acc_gyro_delta[1] < 20) && (SL_GetAbsShort(acc_gyro_input[0]) < 3000) && (SL_GetAbsShort(acc_gyro_input[1]) < 3000) && (SL_GetAbsShort(acc_gyro_input[2] - 8192) < 3000)) { //acc<80mg gyro<20 lsb
if (SL_SC7U22_Error_cnt < 200) {
SL_SC7U22_Error_cnt++; // 静止计数器累加
}
@ -926,6 +927,9 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short
return 2; // 校准未完成,返回错误状态
}
unsigned char get_calibration_state(void){
return SL_SC7U22_Error_Flag;
}
#endif

View File

@ -130,7 +130,7 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en,signed short *
/**output Angle_output[2]: Yaw*******************************/
/**input yaw_rst: reset yaw value***************************/
unsigned char get_calibration_state(void);
/**寄存器宏定义*******************************/
#define SC7U22_WHO_AM_I 0x01

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -6337,11 +6337,12 @@ objs/apps/earphone/xtell_Sensor/xtell_handler.c.o
-r=objs/apps/earphone/xtell_Sensor/xtell_handler.c.o,sniff_out,l
objs/apps/earphone/xtell_Sensor/send_data.c.o
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,send_sensor_data_task,pl
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,sensor_test,pl
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,test,pl
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,SL_SC7U22_RawData_Read,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,SkiingTracker_Update,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,send_data_to_ble_client,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,printf,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,sensor_processing_task,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,gsensor_test,pl
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,sys_timer_del,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,xtell_task_create,pl
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,soft_iic_init,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,gpio_set_direction,l
@ -6350,6 +6351,7 @@ objs/apps/earphone/xtell_Sensor/send_data.c.o
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,SL_SC7U22_Config,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,circle_buffer_init,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,create_process,l
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,gsensor_id,pl
-r=objs/apps/earphone/xtell_Sensor/send_data.c.o,test_id,pl
objs/apps/earphone/xtell_Sensor/buffer/circle_buffer.c.o
-r=objs/apps/earphone/xtell_Sensor/buffer/circle_buffer.c.o,circle_buffer_init,pl
@ -6383,7 +6385,6 @@ objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_I2c_Spi_Write,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_I2c_Spi_Read,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_Check,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,printf,l
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_Config,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_POWER_DOWN,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_SOFT_RESET,pl
@ -6396,6 +6397,7 @@ objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,SL_SC7U22_Angle_Output,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,asinf,l
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,atanf,l
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,get_calibration_state,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,gravity_sensor_command,l
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,_gravity_sensor_get_ndata,l
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,angle,pl
@ -6432,11 +6434,16 @@ objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,Error_Accgyro,pl
-r=objs/apps/earphone/xtell_Sensor/sensor/SC7U22.c.o,Sum_Avg_Accgyro,pl
objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,SkiingTracker_Init,pl
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,SkiingTracker_Update,pl
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,skiing_tracker_init,pl
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,skiing_tracker_update,pl
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,sqrtf,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,sensor_processing_task,pl
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,printf,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,get_calibration_state,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,SL_SC7U22_Angle_Output,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,fabsf,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,atan2f,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,cosf,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,sinf,l
-r=objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o,puts,l
cpu/br28/liba/cpu.a.llvm.19376.crc16.c
-r=cpu/br28/liba/cpu.a.llvm.19376.crc16.c,__crc16_mutex_init,pl

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +1,133 @@
objs/apps/earphone/xtell_Sensor/calculate/skiing_tracker.c.o: \
apps/earphone/xtell_Sensor/calculate/skiing_tracker.c \
apps/earphone/xtell_Sensor/calculate/skiing_tracker.h \
C:/JL/pi32/pi32v2-include\math.h C:/JL/pi32/pi32v2-include\sys/reent.h \
C:/JL/pi32/pi32v2-include\_ansi.h C:/JL/pi32/pi32v2-include\newlib.h \
apps/earphone/xtell_Sensor/calculate/../sensor/SC7U22.h \
apps/common/device\gSensor/gSensor_manage.h \
include_lib/system/generic\printf.h \
include_lib/system/generic/typedef.h \
include_lib/driver/cpu/br28\asm/cpu.h \
include_lib/driver/cpu/br28\asm/br28.h \
include_lib/driver/cpu/br28\asm/io_omap.h \
include_lib/driver/cpu/br28\asm/io_imap.h \
include_lib/driver/cpu/br28\asm/csfr.h \
include_lib/driver/cpu/br28\asm/cache.h \
include_lib/driver/cpu/br28\asm/irq.h \
include_lib/driver/cpu/br28\asm/hwi.h \
include_lib/system\generic/printf.h include_lib\system/generic/log.h \
include_lib\system/generic/printf.h \
include_lib/system\generic/errno-base.h \
C:/JL/pi32/pi32v2-include\string.h C:/JL/pi32/pi32v2-include/_ansi.h \
C:/JL/pi32/pi32v2-include\newlib.h \
C:/JL/pi32/pi32v2-include\sys/config.h \
C:/JL/pi32/pi32v2-include\machine/ieeefp.h \
C:/JL/pi32/pi32v2-include\sys/features.h \
C:/JL/pi32/pi32v2-include\sys/reent.h \
C:/JL/pi32/pi32v2-include\sys/_types.h \
C:/JL/pi32/pi32v2-include\machine/_types.h \
C:/JL/pi32/pi32v2-include\machine/_default_types.h \
C:/JL/pi32/pi32v2-include\sys/lock.h \
C:/JL/pi32/pi32v2-include\string.h \
C:/JL/pi32/pi32v2-include\sys/cdefs.h \
C:/JL/pi32/pi32v2-include\sys/string.h
C:/JL/pi32/pi32v2-include\sys/string.h \
C:/JL/pi32/pi32v2-include\strings.h \
C:/JL/pi32/pi32v2-include\sys/types.h \
C:/JL/pi32/pi32v2-include\sys/_stdint.h \
C:/JL/pi32/pi32v2-include\machine/types.h include_lib\system/malloc.h \
include_lib/system/generic\cpu.h \
include_lib/driver/cpu/br28\asm/iic_hw.h \
include_lib/driver/cpu/br28\asm/iic_soft.h include_lib/system\timer.h \
include_lib/system/generic/list.h apps/earphone/include\app_config.h \
apps/earphone/board/br28\board_config.h include_lib\media/audio_def.h \
apps/earphone/board/br28/board_jl701n_demo_cfg.h \
apps/earphone/board/br28/board_jl701n_demo_global_build_cfg.h \
apps/common/device/usb\usb_std_class_def.h \
apps/earphone/board/br28/board_jl701n_btemitter_cfg.h \
apps/earphone/board/br28/board_jl701n_btemitter_global_build_cfg.h \
apps/earphone/board/br28/board_jl701n_anc_cfg.h \
apps/earphone/board/br28/board_jl701n_anc_global_build_cfg.h \
apps/earphone/board/br28/board_jl7016g_hybrid_cfg.h \
apps/earphone/board/br28/board_jl7016g_hybrid_global_build_cfg.h \
apps/earphone/board/br28/board_jl7018f_demo_cfg.h \
apps/earphone/board/br28/board_jl7018f_demo_global_build_cfg.h \
apps/common/device/usb\usb_common_def.h \
include_lib/btctrler\btcontroller_mode.h \
apps/earphone/include/user_cfg_id.h \
apps/common/config/include\bt_profile_cfg.h \
include_lib/btctrler\btcontroller_modules.h \
include_lib/btctrler/hci_transport.h include_lib/btctrler/ble/hci_ll.h \
C:/JL/pi32/pi32v2-include\stdint.h \
C:/JL/pi32/pi32v2-include\sys/_intsup.h \
C:/JL/pi32/pi32v2-include\stdlib.h \
C:/JL/pi32/pi32v2-include\machine/stdlib.h \
C:/JL/pi32/pi32v2-include\alloca.h \
include_lib/btctrler/classic/hci_lmp.h include_lib/system\event.h \
include_lib/system/generic/rect.h include_lib\system/includes.h \
include_lib/system/init.h include_lib/system/spinlock.h \
include_lib/system/generic\irq.h include_lib/system/task.h \
include_lib/system/os/os_api.h include_lib/system\os/os_cpu.h \
include_lib/system/generic\jiffies.h include_lib/system\os/os_error.h \
include_lib/system\os/os_type.h include_lib/system\os/ucos_ii.h \
include_lib/system\os/os_cfg.h include_lib/system\os/os_api.h \
include_lib/system/wait.h include_lib/system/app_core.h \
include_lib/system/app_msg.h include_lib/system/database.h \
include_lib/system/fs/fs.h include_lib/system\generic/ioctl.h \
include_lib/system\generic/atomic.h include_lib\system/sys_time.h \
include_lib/system/fs/fs_file_name.h include_lib/system/fs/sdfile.h \
include_lib/system/power_manage.h include_lib/system/syscfg_id.h \
include_lib/system/bank_switch.h include_lib/system/generic/includes.h \
include_lib/system/generic/ascii.h include_lib/system/generic/gpio.h \
include_lib/driver/cpu/br28\asm/gpio.h \
include_lib/system/generic/version.h include_lib/system/generic/lbuf.h \
include_lib/system/generic/lbuf_lite.h \
include_lib/system/generic/circular_buf.h \
include_lib/system/generic/index.h \
include_lib/system/generic/debug_lite.h \
include_lib/system/device/includes.h \
include_lib/system/device/device.h \
include_lib/system\device/ioctl_cmds.h \
include_lib/system/device/key_driver.h \
include_lib/system/device/iokey.h include_lib/system/device/irkey.h \
include_lib/system/device/adkey.h \
include_lib/driver/cpu/br28\asm/adc_api.h \
include_lib/system/device/slidekey.h \
include_lib/system/device/touch_key.h \
include_lib/driver/cpu/br28\asm/plcnt.h \
include_lib/system/device/rdec_key.h \
include_lib/driver/cpu/br28\asm/rdec.h \
include_lib/driver/cpu/br28\asm/includes.h \
include_lib/driver/cpu/br28\asm/crc16.h \
include_lib/driver/cpu/br28\asm/clock.h \
include_lib/driver/cpu/br28\asm/clock_hw.h \
include_lib/driver/cpu/br28\asm/clock_define.h \
include_lib/driver/cpu/br28\asm/uart.h \
include_lib/driver\device/uart.h \
include_lib/driver/cpu/br28\asm/uart_dev.h \
include_lib/driver/cpu/br28\asm/spiflash.h \
include_lib/driver\device/spiflash.h \
include_lib/driver/cpu/br28\asm/power_interface.h \
include_lib/driver/cpu/br28\asm/power/p33.h \
include_lib/driver/cpu/br28/asm/power/p33_sfr.h \
include_lib/driver/cpu/br28/asm/power/p33_app.h \
include_lib/driver/cpu/br28/asm/power/p33_io_app.h \
include_lib/driver/cpu/br28/asm/power/rtc_app.h \
include_lib/driver/cpu/br28\asm/power/p11.h \
include_lib/driver/cpu/br28/asm/power/p11_csfr.h \
include_lib/driver/cpu/br28/asm/power/p11_sfr.h \
include_lib/driver/cpu/br28/asm/power/p11_io_omap.h \
include_lib/driver/cpu/br28/asm/power/p11_io_imap.h \
include_lib/driver/cpu/br28/asm/power/p11_app.h \
include_lib/driver/cpu/br28/asm/power/p11.h \
include_lib/driver/cpu/br28\asm/power/power_api.h \
include_lib/driver/cpu/br28\asm/power/power_port.h \
include_lib/driver/cpu/br28\asm/power/power_wakeup.h \
include_lib/driver/cpu/br28\asm/power/power_reset.h \
include_lib/driver/cpu/br28\asm/power/power_compat.h \
include_lib/driver/cpu/br28\asm/power/lp_ipc.h \
include_lib/driver/cpu/br28/asm/power/m2p_msg.h \
include_lib/driver/cpu/br28/asm/power/p2m_msg.h \
include_lib/driver/cpu/br28\asm/efuse.h \
include_lib/driver/cpu/br28\asm/wdt.h \
include_lib/driver/cpu/br28\asm/debug.h \
include_lib/driver/cpu/br28\asm/timer.h \
include_lib/driver/cpu/br28\asm/rtc.h \
include_lib/driver\device/sdio_host_init.h \
C:/JL/pi32/pi32v2-include\math.h