This commit is contained in:
lmx
2025-11-18 10:15:00 +08:00
parent b621ef7e44
commit d0d9c0a630
46 changed files with 172875 additions and 173101 deletions

View File

@ -4,7 +4,7 @@
#include "os/os_api.h"
#include "../xtell.h"
// #define ENABLE_XLOG 1
#define ENABLE_XLOG 1
#ifdef xlog
#undef xlog
#endif
@ -270,7 +270,7 @@ void SL_SC7U22_RawData_Read(signed short * acc_data_buf,signed short * gyr_data_
gyr_data_buf[1] =(signed short)((((unsigned char)raw_data[8])* 256) + ((unsigned char)raw_data[9]));//GYRY-16位
gyr_data_buf[2] =(signed short)((((unsigned char)raw_data[10])* 256) + ((unsigned char)raw_data[11]));//GYRZ-16位
xlog("RawData:AX=%d,AY=%d,AZ=%d,GX=%d,GY=%d,GZ=%d\r\n",acc_data_buf[0],acc_data_buf[1],acc_data_buf[2],gyr_data_buf[0],gyr_data_buf[1],gyr_data_buf[2]);
// xlog("RawData:AX=%d,AY=%d,AZ=%d,GX=%d,GY=%d,GZ=%d\r\n",acc_data_buf[0],acc_data_buf[1],acc_data_buf[2],gyr_data_buf[0],gyr_data_buf[1],gyr_data_buf[2]);
}
#else
@ -666,7 +666,7 @@ float angle0[3] = {0, 0, 0}, angle_dot0[3] = {0, 0, 0}; // 姿态角的估计值
// Q_gyro: 过程噪声协方差表示陀螺仪偏置bias的不确定性。
// R_angle: 测量噪声协方差,表示通过加速度计计算出的角度测量值的不确定性。值越小,表示越相信加速度计的测量结果。
// dt: 采样时间间隔单位这里是10ms (0.01s)对应100Hz的采样率。
//float Q_angle=0.0003, Q_gyro=0.001, R_angle=0.005, dt=0.005;//5ms ST
// float Q_angle=0.0003, Q_gyro=0.001, R_angle=0.005, dt=0.005;//5ms ST
//float Q_angle=0.00001, Q_gyro=0.00001, R_angle=0.005, dt=0.0025;//5ms ST
float Q_angle = 0.0003, Q_gyro = 0.001, R_angle = 0.005, dt = 0.01; //10ms
@ -1166,72 +1166,321 @@ unsigned char get_calibration_state(void){
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
/*
//-----------------------------------------
调用示例-by_lmx
#if 0
// --- 新增:定义自动化校准状态 ---
typedef enum {
CAL_STATE_IDLE, // 0: 空闲,未开始校准
CAL_STATE_WAIT_STILL, // 1: 等待设备静止
CAL_STATE_COLLECTING, // 2: 正在采集数据
CAL_STATE_PAUSE_BETWEEN_FACES, // 3: 面与面之间的暂停
CAL_STATE_CALCULATING, // 4: 正在计算最终参数
CAL_STATE_FINISHED, // 5: 校准完成,参数有效
} SL_AutoCalib_State;
// --- 新增:定义校准的面 ---
typedef enum {
CAL_FACE_POS_Z = 0, // Z+
CAL_FACE_NEG_Z, // Z-
CAL_FACE_POS_Y, // Y+
CAL_FACE_NEG_Y, // Y-
CAL_FACE_POS_X, // X+
CAL_FACE_NEG_X, // X-
CAL_FACE_COUNT // 总面数
} SL_Calib_Face;
// --- 校准参数常量 ---
#define CAL_STILL_TIME_THRESHOLD 190 // 需要静止的采样周期数 (约1.9s)
#define CAL_SAMPLES_TO_COLLECT 50 // 每个面采集的样本数
#define CAL_PAUSE_SECONDS 4 // 面间暂停秒数
// --- 修改/新增 全局变量 ---
static SL_AutoCalib_State g_calib_state = CAL_STATE_IDLE;
static SL_Calib_Face g_current_calib_face = CAL_FACE_POS_Z;
static unsigned short g_still_count = 0;
static unsigned char g_samples_collected = 0;
static unsigned short g_pause_timer = 0;
static long g_calib_data_sum[6] = {0};
static signed short g_calib_avg_data[CAL_FACE_COUNT][6] = {{0}};
static float g_acc_offset[3] = {0.0f};
static float g_acc_scale[3] = {1.0f, 1.0f, 1.0f};
static signed short g_gyro_offset[3] = {0}; // 陀螺仪偏移用整数更符合原始数据类型
static unsigned char g_calibration_valid = 0;
//1.
// 定义用于存放传感器数据的缓冲区
static signed short acc_raw_data[3]; // [0]: acc_x, [1]: acc_y, [2]: acc_z
static signed short gyr_raw_data[3]; // [0]: gyr_x, [1]: gyr_y, [2]: gyr_z
static signed short combined_raw_data[6]; // 用于合并 acc 和 gyr 数据
static float final_angle_data[3]; // [0]: Pitch, [1]: Roll, [2]: Yaw
// 传感器数据处理任务
void sensor_processing_task(void *priv)
#if (ACC_RANGE == 2)
#define G_VALUE (16384.0f)
#elif (ACC_RANGE == 4)
#define G_VALUE (8192.0f)
#elif (ACC_RANGE == 8)
#define G_VALUE (4096.0f)
#elif (ACC_RANGE == 16)
#define G_VALUE (2048.0f)
#endif
/**
* @brief IMU姿态解算函数增加了六面校准功能。
* @param calibration_cmd 校准命令,来自 SL_Calibration_Cmd 枚举。
* @param acc_gyro_input 指向6轴原始数据的指针 (AccX,Y,Z, GyroX,Y,Z)。
* @param Angle_output 指向3轴姿态角输出的指针 (Pitch, Roll, Yaw)。
* @param yaw_rst Yaw轴复位标志。
* @return unsigned char 0: 正在校准, 1: 计算成功, 2: 校准未完成,无法计算。
*/
unsigned char SIX_SL_SC7U22_Angle_Output(unsigned char auto_calib_start, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst)
{
while (1) {
// 4. 周期性调用读取函数,获取原始数据
SL_SC7U22_RawData_Read(acc_raw_data, gyr_raw_data);
unsigned char sl_i = 0;
// 5. 合并加速度和角速度数据到一个数组中
// SL_SC7U22_Angle_Output 函数需要一个包含6个元素的数组作为输入
memcpy(&combined_raw_data[0], acc_raw_data, sizeof(acc_raw_data));
memcpy(&combined_raw_data[3], gyr_raw_data, sizeof(gyr_raw_data));
// 启动自动化校准流程
if (auto_calib_start == 1 && g_calib_state == CAL_STATE_IDLE) {
g_calib_state = CAL_STATE_WAIT_STILL;
g_current_calib_face = CAL_FACE_POS_Z;
g_calibration_valid = 0;
xlog("\n\n===== Auto-Calibration Started =====\r\n");
xlog("Step 1/%d: Place device with Z-axis pointing UPWARD and keep it still.\r\n", CAL_FACE_COUNT);
}
// 6. 调用姿态解算函数
// 参数: (校准使能, 输入的6轴数据, 输出的角度数据, Yaw轴复位标志)
// calibration_en = 1: 让函数内部自动管理校准过程
// yaw_rst = 0: 不复位Yaw角
unsigned char status = SL_SC7U22_Angle_Output(1, combined_raw_data, final_angle_data, 0);
// 7. 检查函数返回的状态
if (status == 1) {
// 计算成功final_angle_data 中的数据有效
xlog("Pitch: %.2f, Roll: %.2f, Yaw: %.2f\n", final_angle_data[0], final_angle_data[1], final_angle_data[2]);
} else if (status == 0) {
// 传感器正在进行静态校准,此时角度数据可能不准确
xlog("Sensor is calibrating...\n");
} else {
// status == 2, 表示校准未完成或发生错误
xlog("Angle calculation error or calibration not finished.\n");
// =================================================================================
// 步骤 1: 自动化校准状态机
// ---------------------------------------------------------------------------------
if (g_calib_state != CAL_STATE_IDLE && g_calib_state != CAL_STATE_FINISHED) {
// --- 静止检测 (通用逻辑) ---
unsigned short acc_delta = 0, gyro_delta = 0;
for (sl_i = 0; sl_i < 3; sl_i++) {
acc_delta += SL_GetAbsShort(acc_gyro_input[sl_i] - Temp_Accgyro[sl_i]);
gyro_delta += SL_GetAbsShort(acc_gyro_input[3 + sl_i] - Temp_Accgyro[3 + sl_i]);
}
for (sl_i = 0; sl_i < 6; sl_i++) Temp_Accgyro[sl_i] = acc_gyro_input[sl_i];
int is_still = (acc_delta < 160) && (gyro_delta < 40);
// 延时一段时间例如10ms (对应100Hz)
os_time_dly(1);
switch (g_calib_state) {
case CAL_STATE_WAIT_STILL:
if (is_still) {
if (++g_still_count >= CAL_STILL_TIME_THRESHOLD) {
g_calib_state = CAL_STATE_COLLECTING;
g_samples_collected = 0;
g_still_count = 0;
for(sl_i = 0; sl_i < 6; sl_i++) g_calib_data_sum[sl_i] = 0;
xlog("Device is still. Collecting data...\r\n");
}
} else {
g_still_count = 0; // 如果移动则重置计数
}
break;
case CAL_STATE_COLLECTING:
if (!is_still) { // 如果在采集中移动了,则重新开始等待静止
g_calib_state = CAL_STATE_WAIT_STILL;
g_still_count = 0;
xlog("Movement detected! Please keep the device still.\r\n");
break;
}
if (g_samples_collected < CAL_SAMPLES_TO_COLLECT) {
for (sl_i = 0; sl_i < 6; sl_i++) {
g_calib_data_sum[sl_i] += acc_gyro_input[sl_i];
}
g_samples_collected++;
} else {
// 当前面采集完成
for (sl_i = 0; sl_i < 6; sl_i++) {
g_calib_avg_data[g_current_calib_face][sl_i] = g_calib_data_sum[sl_i] / CAL_SAMPLES_TO_COLLECT;
}
xlog("Face %d data collected.\r\n", g_current_calib_face + 1);
if (g_current_calib_face < CAL_FACE_NEG_X) {
g_calib_state = CAL_STATE_PAUSE_BETWEEN_FACES;
g_pause_timer = 0;
xlog("Pausing for %d seconds. Please prepare for the next orientation.\r\n", CAL_PAUSE_SECONDS);
} else {
// 所有面都已完成
g_calib_state = CAL_STATE_CALCULATING;
}
}
break;
case CAL_STATE_PAUSE_BETWEEN_FACES:
if (++g_pause_timer >= (CAL_PAUSE_SECONDS * 1000 / dt)) {
g_current_calib_face++;
g_calib_state = CAL_STATE_WAIT_STILL;
g_still_count = 0;
switch(g_current_calib_face) {
case CAL_FACE_NEG_Z: xlog("Step 2/%d: Place device with Z-axis pointing DOWNWARD and keep it still.\r\n", CAL_FACE_COUNT); break;
case CAL_FACE_POS_Y: xlog("Step 3/%d: Place device with Y-axis pointing UPWARD and keep it still.\r\n", CAL_FACE_COUNT); break;
case CAL_FACE_NEG_Y: xlog("Step 4/%d: Place device with Y-axis pointing DOWNWARD and keep it still.\r\n", CAL_FACE_COUNT); break;
case CAL_FACE_POS_X: xlog("Step 5/%d: Place device with X-axis pointing UPWARD and keep it still.\r\n", CAL_FACE_COUNT); break;
case CAL_FACE_NEG_X: xlog("Step 6/%d: Place device with X-axis pointing DOWNWARD and keep it still.\r\n", CAL_FACE_COUNT); break;
}
}
break;
case CAL_STATE_CALCULATING:
xlog("All data collected. Calculating calibration parameters...\r\n");
// 计算陀螺仪偏移
long gyro_sum[3] = {0};
for (sl_i = 0; sl_i < CAL_FACE_COUNT; sl_i++) {
gyro_sum[0] += g_calib_avg_data[sl_i][3]; // Gx
gyro_sum[1] += g_calib_avg_data[sl_i][4]; // Gy
gyro_sum[2] += g_calib_avg_data[sl_i][5]; // Gz
}
g_gyro_offset[0] = gyro_sum[0] / CAL_FACE_COUNT;
g_gyro_offset[1] = gyro_sum[1] / CAL_FACE_COUNT;
g_gyro_offset[2] = gyro_sum[2] / CAL_FACE_COUNT;
// 计算加速度计偏移和增益
g_acc_offset[0] = (g_calib_avg_data[CAL_FACE_POS_X][0] + g_calib_avg_data[CAL_FACE_NEG_X][0]) / 2.0f;
g_acc_scale[0] = (2.0f * G_VALUE) / (g_calib_avg_data[CAL_FACE_POS_X][0] - g_calib_avg_data[CAL_FACE_NEG_X][0]);
g_acc_offset[1] = (g_calib_avg_data[CAL_FACE_POS_Y][1] + g_calib_avg_data[CAL_FACE_NEG_Y][1]) / 2.0f;
g_acc_scale[1] = (2.0f * G_VALUE) / (g_calib_avg_data[CAL_FACE_POS_Y][1] - g_calib_avg_data[CAL_FACE_NEG_Y][1]);
g_acc_offset[2] = (g_calib_avg_data[CAL_FACE_POS_Z][2] + g_calib_avg_data[CAL_FACE_NEG_Z][2]) / 2.0f;
g_acc_scale[2] = (2.0f * G_VALUE) / (g_calib_avg_data[CAL_FACE_POS_Z][2] - g_calib_avg_data[CAL_FACE_NEG_Z][2]);
g_calibration_valid = 1;
g_calib_state = CAL_STATE_FINISHED;
xlog("===== Calibration Finished! =====\r\n");
xlog("Acc Offset: %.2f, %.2f, %.2f\r\n", g_acc_offset[0], g_acc_offset[1], g_acc_offset[2]);
xlog("Acc Scale: %.4f, %.4f, %.4f\r\n", g_acc_scale[0], g_acc_scale[1], g_acc_scale[2]);
xlog("Gyro Offset: %d, %d, %d\r\n", g_gyro_offset[0], g_gyro_offset[1], g_gyro_offset[2]);
break;
default:
break;
}
return 0; // 只要还在校准流程中就返回0
}
}
// 应用程序主入口或初始化函数
void app_main()
{
// ... 其他初始化代码 ...
// 2. 调用初始化函数来配置SCU722传感器
unsigned char init_success = SL_SC7U22_Config();
if (init_success) {
xlog("SCU722 初始化成功!\n");
// 3. 创建一个任务来周期性地读取和处理数据
task_create(sensor_processing_task, NULL, "sensor_task");
} else {
xlog("SCU722 初始化失败!\n");
// =================================================================================
// 步骤 2: 姿态解算
// ---------------------------------------------------------------------------------
if (g_calibration_valid == 0) {
return 2; // 校准未完成,无法进行姿态解算
}
// ...
}
float angle_acc[3] = {0};
float gyro_val[3] = {0};
float calibrated_acc[3] = {0};
//-----------------------------------------
*/
// --- 2.1 数据预处理 (应用新的校准参数) ---
// 应用偏移和增益校准加速度计
calibrated_acc[0] = ((float)acc_gyro_input[0] - g_acc_offset[0]) * g_acc_scale[0];
calibrated_acc[1] = ((float)acc_gyro_input[1] - g_acc_offset[1]) * g_acc_scale[1];
calibrated_acc[2] = ((float)acc_gyro_input[2] - g_acc_offset[2]) * g_acc_scale[2];
// 应用偏移校准陀螺仪
gyro_val[0] = ((float)acc_gyro_input[4] - g_gyro_offset[1]) * 0.061; // GYR-Y -> Pitch
gyro_val[1] = ((float)acc_gyro_input[3] - g_gyro_offset[0]) * 0.061; // GYR-X -> Roll
gyro_val[2] = ((float)acc_gyro_input[5] - g_gyro_offset[2]) * 0.061; // GYR-Z -> Yaw
// --- 2.2 使用校准后的加速度计计算姿态角 ---
// 将校准后的加速度值转换为归一化的重力分量
angle_acc[0] = calibrated_acc[0] / G_VALUE; // ax
angle_acc[1] = calibrated_acc[1] / G_VALUE; // ay
angle_acc[2] = calibrated_acc[2] / G_VALUE; // az
// 限制范围防止asinf/atanf计算错误
if (angle_acc[0] > 1.0f) angle_acc[0] = 1.0f;
if (angle_acc[0] < -1.0f) angle_acc[0] = -1.0f;
// ... (对 angle_acc[1] 和 angle_acc[2] 也做同样处理)
angle_acc[0] = asinf(angle_acc[0]) * 57.29578f; // Pitch
angle_acc[1] = atan2f(angle_acc[1], angle_acc[2]) * 57.29578f; // Roll (使用atan2更稳健)
// =================================================================================
// 步骤 2.4: 卡尔曼滤波
// 对Pitch和Roll分别进行滤波
// ---------------------------------------------------------------------------------
/************** Pitch 轴滤波 **************/
// --- 预测步骤 ---
// 1. 预测状态:根据上一时刻的角度和当前角速度,预测当前角度
angle0[0] += (gyro_val[0] - q_bias0[0]) * dt;
// 2. 预测协方差更新P矩阵表示预测状态的不确定性
Pdot0[0] = Q_angle - P0[0][1] - P0[1][0] + P0[1][1] * dt;
Pdot0[1] = -P0[1][1];
Pdot0[2] = -P0[1][1];
Pdot0[3] = Q_gyro;
P0[0][0] += Pdot0[0] * dt;
P0[0][1] += Pdot0[1] * dt;
P0[1][0] += Pdot0[2] * dt;
P0[1][1] += Pdot0[3] * dt;
// --- 更新步骤 ---
// 1. 计算卡尔曼增益 K
PCt0_0[0] = C_0 * P0[0][0];
PCt0_1[0] = C_0 * P0[1][0];
E0[0] = R_angle + C_0 * PCt0_0[0];
if (E0[0] == 0) { E0[0] = 0.0001; } // 防止除零
K0_0[0] = PCt0_0[0] / E0[0];
K0_1[0] = PCt0_1[0] / E0[0];
// 2. 计算测量余差innovation
angle_err0[0] = angle_acc[0] - angle0[0];
// 3. 更新状态估计:结合预测值和测量值,得到最优估计
angle0[0] += K0_0[0] * angle_err0[0];
// 4. 更新陀螺仪偏置估计
q_bias0[0] += K0_1[0] * angle_err0[0];
angle_dot0[0] = gyro_val[0] - q_bias0[0];
// 5. 更新协方差矩阵 P
t0_0[0] = PCt0_0[0];
t0_1[0] = C_0 * P0[0][1];
P0[0][0] -= K0_0[0] * t0_0[0];
P0[0][1] -= K0_0[0] * t0_1[0];
P0[1][0] -= K0_1[0] * t0_0[0];
P0[1][1] -= K0_1[0] * t0_1[0];
// 输出最终的Pitch角
Angle_output[0] = angle0[0];
/************** Roll 轴滤波 (过程同Pitch) **************/
// --- 预测步骤 ---
angle0[1] += (gyro_val[1] - q_bias0[1]) * dt;
Pdot1[0] = Q_angle - P1[0][1] - P1[1][0] + P1[1][1] * dt;
Pdot1[1] = -P1[1][1];
Pdot1[2] = -P1[1][1];
Pdot1[3] = Q_gyro;
P1[0][0] += Pdot1[0] * dt;
P1[0][1] += Pdot1[1] * dt;
P1[1][0] += Pdot1[2] * dt;
P1[1][1] += Pdot1[3] * dt;
// --- 更新步骤 ---
PCt0_0[1] = C_1 * P1[0][0];
PCt0_1[1] = C_1 * P1[1][0];
E0[1] = R_angle + C_1 * PCt0_0[1];
if (E0[1] == 0) { E0[1] = 0.0001; }
K0_0[1] = PCt0_0[1] / E0[1];
K0_1[1] = PCt0_1[1] / E0[1];
angle_err0[1] = angle_acc[1] - angle0[1];
angle0[1] += K0_0[1] * angle_err0[1];
q_bias0[1] += K0_1[1] * angle_err0[1];
angle_dot0[1] = gyro_val[1] - q_bias0[1];
t0_0[1] = PCt0_0[1];
t0_1[1] = C_1 * P1[0][1];
P1[0][0] -= K0_0[1] * t0_0[1];
P1[0][1] -= K0_0[1] * t0_1[1];
P1[1][0] -= K0_1[1] * t0_0[1];
P1[1][1] -= K0_1[1] * t0_1[1];
// 输出最终的Roll角
Angle_output[1] = angle0[1];
/************** Yaw 轴计算 **************/
// Yaw角无法通过加速度计重力来校正因此这里只使用陀螺仪进行简单积分。
// 这种方法会因为陀螺仪的漂移而导致误差随时间累积。
if (yaw_rst == 1) {
Angle_output[2] = 0; // 如果有复位信号,则清零
}
// 增加一个简单的阈值,当角速度较小时,认为没有转动,以减少漂移
if (SL_GetAbsShort(Temp_Accgyro[5]) > 8) {
Angle_output[2] += gyro_val[2] * dt;
}
return 1; // 返回1表示计算成功
}
#endif

View File

@ -131,7 +131,7 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en,signed short *
/**input yaw_rst: reset yaw value***************************/
unsigned char Original_SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
unsigned char SIX_SL_SC7U22_Angle_Output(unsigned char auto_calib_start, signed short *acc_gyro_input, float *Angle_output, unsigned char yaw_rst);
unsigned char get_calibration_state(void);
/**寄存器宏定义*******************************/
#define SC7U22_WHO_AM_I 0x01

View File

@ -925,72 +925,3 @@ unsigned char SL_SC7U22_Angle_Output(unsigned char calibration_en, signed short
}
#endif
/*
//-----------------------------------------
调用示例-by_lmx
//1.
// 定义用于存放传感器数据的缓冲区
static signed short acc_raw_data[3]; // [0]: acc_x, [1]: acc_y, [2]: acc_z
static signed short gyr_raw_data[3]; // [0]: gyr_x, [1]: gyr_y, [2]: gyr_z
static signed short combined_raw_data[6]; // 用于合并 acc 和 gyr 数据
static float final_angle_data[3]; // [0]: Pitch, [1]: Roll, [2]: Yaw
// 传感器数据处理任务
void sensor_processing_task(void *priv)
{
while (1) {
// 4. 周期性调用读取函数,获取原始数据
SL_SC7U22_RawData_Read(acc_raw_data, gyr_raw_data);
// 5. 合并加速度和角速度数据到一个数组中
// SL_SC7U22_Angle_Output 函数需要一个包含6个元素的数组作为输入
memcpy(&combined_raw_data[0], acc_raw_data, sizeof(acc_raw_data));
memcpy(&combined_raw_data[3], gyr_raw_data, sizeof(gyr_raw_data));
// 6. 调用姿态解算函数
// 参数: (校准使能, 输入的6轴数据, 输出的角度数据, Yaw轴复位标志)
// calibration_en = 1: 让函数内部自动管理校准过程
// yaw_rst = 0: 不复位Yaw角
unsigned char status = SL_SC7U22_Angle_Output(1, combined_raw_data, final_angle_data, 0);
// 7. 检查函数返回的状态
if (status == 1) {
// 计算成功final_angle_data 中的数据有效
printf("Pitch: %.2f, Roll: %.2f, Yaw: %.2f\n", final_angle_data[0], final_angle_data[1], final_angle_data[2]);
} else if (status == 0) {
// 传感器正在进行静态校准,此时角度数据可能不准确
printf("Sensor is calibrating...\n");
} else {
// status == 2, 表示校准未完成或发生错误
printf("Angle calculation error or calibration not finished.\n");
}
// 延时一段时间例如10ms (对应100Hz)
os_time_dly(1);
}
}
// 应用程序主入口或初始化函数
void app_main()
{
// ... 其他初始化代码 ...
// 2. 调用初始化函数来配置SCU722传感器
unsigned char init_success = SL_SC7U22_Config();
if (init_success) {
printf("SCU722 初始化成功!\n");
// 3. 创建一个任务来周期性地读取和处理数据
task_create(sensor_processing_task, NULL, "sensor_task");
} else {
printf("SCU722 初始化失败!\n");
}
// ...
}
//-----------------------------------------
*/