feat: Add rfid feature and .gitignore file

This commit is contained in:
lmx
2025-11-28 16:25:35 +08:00
parent 818e8c3778
commit ade4b0a1f8
1244 changed files with 342105 additions and 0 deletions

View File

@ -0,0 +1,635 @@
/*
*/
#include "skiing_tracker.h"
#include "../sensor/SC7U22.h"
#define G_ACCELERATION 9.81f
#define DEG_TO_RAD (3.14159265f / 180.0f)
#define ENABLE_XLOG 1
#ifdef xlog
#undef xlog
#endif
#if ENABLE_XLOG
#define xlog(format, ...) printf("[XT:%s] " format, __func__, ##__VA_ARGS__)
#else
#define xlog(format, ...) ((void)0)
#endif
// --- 静止检测 ---
//两个判断是否静止的必要条件:动态零速更新(ZUPT)阈值
// 加速方差阈值,提高阈值,让“刹车”更灵敏,以便在波浪式前进等慢速漂移时也能触发零速更新
#define STOP_ACC_VARIANCE_THRESHOLD 0.2f
// 陀螺仪方差阈值
#define STOP_GYR_VARIANCE_THRESHOLD 5.0f
// 静止时候的陀螺仪模长
#define STOP_GYR_MAG_THRESHOLD 15
// --- --- ---
// --- 启动滑雪阈值 ---
// 加速度模长与重力的差值大于此值,认为开始运动;降低阈值,让“油门”更灵敏,以便能捕捉到真实的慢速启动
#define START_ACC_MAG_THRESHOLD 1.0f //0.5、1
// 陀螺仪方差阈值,以允许启动瞬间的正常抖动,但仍能过滤掉混乱的、非滑雪的晃动。
#define START_GYR_VARIANCE_THRESHOLD 15.0f
// --- --- ---
// --- 滑雪过程 ---
//加速度 模长(不含重力),低于此值视为 在做匀速运动
#define SKIING_ACC_MAG_THRESHOLD 0.5f
//陀螺仪 模长,高于此值视为 摔倒了
#define FALLEN_GRY_MAG_THRESHOLD 2000.0f //未确定
// --- --- ---
// --- 原地旋转抖动 ---
// 加速度 方差 阈值。此值比 静止检测 阈值更宽松,
#define WOBBLE_ACC_VARIANCE_THRESHOLD 0.5f
// 加速度 模长 阈值
#define WOBBLE_ACC_MAG_THRESHOLD 1.0f
// 角速度 总模长 大于此值(度/秒),认为正在进行非滑雪的旋转或摆动
#define ROTATION_GYR_MAG_THRESHOLD 30.0f
// --- --- ---
// --- 滑雪转弯动 ---
// 加速度 方差 阈值,大于此值,滑雪过程可能发生了急转弯
#define WHEEL_ACC_VARIANCE_THRESHOLD 7.0f
// 角速度 总模长 大于此值(度/秒),认为滑雪过程中进行急转弯
#define WHEEL_GYR_MAG_THRESHOLD 500.0f //
// --- --- ---
// --- 跳跃 ---
// 加速度模长低于此值(g),认为进入失重状态(IN_AIR)
#define AIRBORNE_ACC_MAG_LOW_THRESHOLD 0.4f
// 加速度模长高于此值(g),认为发生落地冲击(LANDING)
#define LANDING_ACC_MAG_HIGH_THRESHOLD 3.5f
// 起跳加速度阈值(g)用于进入TAKING_OFF状态
#define TAKEOFF_ACC_MAG_HIGH_THRESHOLD 1.8f
// 进入空中状态确认计数需要连续3个采样点加速度低于阈值才判断为起跳
#define AIRBORNE_CONFIRM_COUNT 3
// 落地状态确认计数加速度恢复到1g附近并持续2个采样点(20ms)则认为已落地
#define GROUNDED_CONFIRM_COUNT 2
// 最大滞空时间(秒),超过此时间强制认为已落地,防止状态锁死
#define MAX_TIME_IN_AIR 12.5f
// --- --- ---
// --- 用于消除积分漂移的滤波器和阈值 ---
// 高通滤波器系数 (alpha)。alpha 越接近1滤除低频(直流偏移)的效果越强,但可能滤掉真实的慢速运动。
// alpha = RC / (RC + dt)参考RC电路而来fc ≈ (1 - alpha) / (2 * π * dt)
#define HPF_ALPHA 0.999f
//0.995f 0.08 Hz 的信号
//0.999f 0.0159 Hz
// --- --- ---
// --- 低通滤波器 ---
// 低通滤波器系数 (alpha)。alpha 越小,滤波效果越强(更平滑),但延迟越大。
// alpha 推荐范围 0.7 ~ 0.95。可以从 0.85 开始尝试。
#define LPF_ALPHA 0.7f
// 加速度死区阈值 (m/s^2)。低于此阈值的加速度被认为是噪声,不参与积分。
// 设得太高会忽略真实的慢速启动,设得太低则无法有效抑制噪声。
//参考0.2f ~ 0.4f
#define ACC_DEAD_ZONE_THRESHOLD 0.05f
// --- 模拟摩擦力,进行速度衰减 ---
#define SPEED_ATTENUATION 1.0f //暂不模拟
BLE_KS_send_data_t KS_data;
static float quaternion_data[4];
#ifdef XTELL_TEST
debug_t debug1;
debug_t debug2;
#endif
static skiing_tracker_t my_skiing_tracker;
//////////////////////////////////////////////////////////////////////////////////////////////////
//实现
void clear_speed(void){
my_skiing_tracker.state = STATIC;
memset(my_skiing_tracker.velocity, 0, sizeof(my_skiing_tracker.velocity));
my_skiing_tracker.speed = 0;
}
void start_detection(void){
my_skiing_tracker.state = STATIC;
memset(my_skiing_tracker.velocity, 0, sizeof(my_skiing_tracker.velocity));
my_skiing_tracker.distance = 0;
my_skiing_tracker.speed = 0;
}
void stop_detection(void){
my_skiing_tracker.state = STOP_DETECTION;
memset(my_skiing_tracker.velocity, 0, sizeof(my_skiing_tracker.velocity));
my_skiing_tracker.speed = 0;
}
/**
* @brief 初始化滑雪追踪器
*
* @param tracker
*/
void skiing_tracker_init(skiing_tracker_t *tracker)
{
if (!tracker) {
return;
}
// 使用memset一次性清零整个结构体包括新增的缓冲区
memset(tracker, 0, sizeof(skiing_tracker_t));
tracker->state = STATIC;
}
/**
* @brief 当检测到落地时,计算空中的水平飞行距离并累加到总距离
*/
static void calculate_air_distance(skiing_tracker_t *tracker) {
float horizontal_speed_on_takeoff = sqrtf(
tracker->initial_velocity_on_takeoff[0] * tracker->initial_velocity_on_takeoff[0] +
tracker->initial_velocity_on_takeoff[1] * tracker->initial_velocity_on_takeoff[1]
);
float distance_in_air = horizontal_speed_on_takeoff * tracker->time_in_air;
tracker->distance += distance_in_air;
}
/**
* @brief 使用四元数直接从设备坐标系的加速度中移除重力分量
* @details 这种方法比使用欧拉角更精确、更稳定,且避免了万向节死锁。
* @param acc_device 输入:设备坐标系下的原始加速度 [x, y, z], 单位 m/s^2
* @param q 输入:表示姿态的四元数 [w, x, y, z]
* @param acc_linear_device 输出:设备坐标系下移除重力后的线性加速度 [x, y, z]
*/
void q_remove_gravity_with_quaternion(const float *acc_device, const float *q, float *acc_linear_device)
{
// 从四元数计算重力在设备坐标系下的投影
// G_device = R_transpose * G_world
// G_world = [0, 0, g]
// R_transpose 的第三列即为重力投影方向
float gx = 2.0f * (q[1] * q[3] - q[0] * q[2]);
float gy = 2.0f * (q[0] * q[1] + q[2] * q[3]);
float gz = q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3];
// 从原始加速度中减去重力分量
acc_linear_device[0] = acc_device[0] - gx * G_ACCELERATION;
acc_linear_device[1] = acc_device[1] - gy * G_ACCELERATION;
acc_linear_device[2] = acc_device[2] - gz * G_ACCELERATION;
}
/**
* @brief 使用四元数将设备坐标系的线性加速度转换到世界坐标系
* @details 同样,此方法比使用欧拉角更优。
* @param acc_linear_device 输入:设备坐标系下的线性加速度 [x, y, z]
* @param q 输入:表示姿态的四元数 [w, x, y, z]
* @param acc_linear_world 输出:世界坐标系下的线性加速度 [x, y, z]
*/
void q_transform_to_world_with_quaternion(const float *acc_linear_device, const float *q, float *acc_linear_world)
{
// 这是 R_device_to_world * acc_linear_device 的展开形式
acc_linear_world[0] = (1.0f - 2.0f*q[2]*q[2] - 2.0f*q[3]*q[3]) * acc_linear_device[0] +
(2.0f*q[1]*q[2] - 2.0f*q[0]*q[3]) * acc_linear_device[1] +
(2.0f*q[1]*q[3] + 2.0f*q[0]*q[2]) * acc_linear_device[2];
acc_linear_world[1] = (2.0f*q[1]*q[2] + 2.0f*q[0]*q[3]) * acc_linear_device[0] +
(1.0f - 2.0f*q[1]*q[1] - 2.0f*q[3]*q[3]) * acc_linear_device[1] +
(2.0f*q[2]*q[3] - 2.0f*q[0]*q[1]) * acc_linear_device[2];
acc_linear_world[2] = (2.0f*q[1]*q[3] - 2.0f*q[0]*q[2]) * acc_linear_device[0] +
(2.0f*q[2]*q[3] + 2.0f*q[0]*q[1]) * acc_linear_device[1] +
(1.0f - 2.0f*q[1]*q[1] - 2.0f*q[2]*q[2]) * acc_linear_device[2];
// acc_linear_world[2] -= G_ACCELERATION;
}
/**
* @brief 计算缓冲区内三轴数据的方差之和
*
* @param buffer 传进来的三轴数据:陀螺仪/加速度
* @return float 返回方差和
*/
static float calculate_variance(float buffer[VARIANCE_BUFFER_SIZE][3])
{
float mean[3] = {0};
float variance[3] = {0};
// 计算均值
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
mean[0] += buffer[i][0];
mean[1] += buffer[i][1];
mean[2] += buffer[i][2];
}
mean[0] /= VARIANCE_BUFFER_SIZE;
mean[1] /= VARIANCE_BUFFER_SIZE;
mean[2] /= VARIANCE_BUFFER_SIZE;
// 计算方差
for (int i = 0; i < VARIANCE_BUFFER_SIZE; i++) {
variance[0] += (buffer[i][0] - mean[0]) * (buffer[i][0] - mean[0]);
variance[1] += (buffer[i][1] - mean[1]) * (buffer[i][1] - mean[1]);
variance[2] += (buffer[i][2] - mean[2]) * (buffer[i][2] - mean[2]);
}
variance[0] /= VARIANCE_BUFFER_SIZE;
variance[1] /= VARIANCE_BUFFER_SIZE;
variance[2] /= VARIANCE_BUFFER_SIZE;
// 返回三轴方差之和,作为一个综合的稳定度指标
return variance[0] + variance[1] + variance[2];
}
/**
* @brief 摩擦力模拟,进行速度衰减
*
* @param tracker
*/
void forece_of_friction(skiing_tracker_t *tracker){
// 增加速度衰减,模拟摩擦力
tracker->velocity[0] *= SPEED_ATTENUATION;
tracker->velocity[1] *= SPEED_ATTENUATION;
tracker->velocity[2] = 0; // 垂直速度强制归零
}
/**
* @brief 状态机更新
*
* @param tracker 传入同步修改后传出
* @param acc_device_ms2 三轴加速度m/s^2
* @param gyr_dps 三轴陀螺仪dps
*/
static void update_state_machine(skiing_tracker_t *tracker, const float *acc_device_ms2, const float *gyr_dps)
{
// 缓冲区未填满时,不进行状态判断,默认为静止
if (!tracker->buffer_filled) {
tracker->state = STATIC;
return;
}
// --- 计算关键指标 ---
float acc_variance = calculate_variance(tracker->acc_buffer); // 计算加速度方差
float gyr_variance = calculate_variance(tracker->gyr_buffer); // 计算陀螺仪方差
float gyr_magnitude = sqrtf(gyr_dps[0]*gyr_dps[0] + gyr_dps[1]*gyr_dps[1] + gyr_dps[2]*gyr_dps[2]); //dps
float acc_magnitude = sqrtf(acc_device_ms2[0]*acc_device_ms2[0] + acc_device_ms2[1]*acc_device_ms2[1] + acc_device_ms2[2]*acc_device_ms2[2]); //m/s^s
float acc_magnitude_g = acc_magnitude / G_ACCELERATION; // 转换为g单位用于跳跃判断
#ifdef XTELL_TEST
debug1.acc_variance =acc_variance;
debug1.gyr_variance =gyr_variance;
debug1.gyr_magnitude=gyr_magnitude;
debug1.acc_magnitude=fabsf(acc_magnitude - G_ACCELERATION);
#endif
// --- 状态机逻辑 (核心修改区域) ---
#if 0 //暂时不考虑空中
// 1. 空中/落地状态的后续处理
if (tracker->state == IN_AIR) {
// A. 检测巨大冲击 -> 落地
if (acc_magnitude_g > LANDING_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = LANDING;
// B. 检测超时 -> 强制落地 (安全机制)
} else if (tracker->time_in_air > MAX_TIME_IN_AIR) {
tracker->state = LANDING;
// C. 检测恢复正常重力 (平缓落地)
} else if (acc_magnitude_g > 0.8f && acc_magnitude_g < 1.5f) {
tracker->grounded_entry_counter++;
if (tracker->grounded_entry_counter >= GROUNDED_CONFIRM_COUNT) {
tracker->state = LANDING;
}
} else {
tracker->grounded_entry_counter = 0;
}
return; // 在空中或刚切换到落地,结束本次状态判断
}
// 2. 严格的 "起跳->空中" 状态转换逻辑
// 只有当处于滑行状态时,才去检测起跳意图
if (tracker->state == NO_CONSTANT_SPEED || tracker->state == CONSTANT_SPEED || tracker->state == WHEEL) {
if (acc_magnitude_g > TAKEOFF_ACC_MAG_HIGH_THRESHOLD) {
tracker->state = TAKING_OFF;
tracker->airborne_entry_counter = 0; // 准备检测失重
return;
}
}
// 只有在TAKING_OFF状态下才去检测是否进入失重
if (tracker->state == TAKING_OFF) {
if (acc_magnitude_g < AIRBORNE_ACC_MAG_LOW_THRESHOLD) {
tracker->airborne_entry_counter++;
if (tracker->airborne_entry_counter >= AIRBORNE_CONFIRM_COUNT) {
memcpy(tracker->initial_velocity_on_takeoff, tracker->velocity, sizeof(tracker->velocity));
tracker->time_in_air = 0;
tracker->state = IN_AIR;
tracker->airborne_entry_counter = 0;
tracker->grounded_entry_counter = 0;
return;
}
} else {
// 如果在起跳冲击后一段时间内没有失重,说明只是一个颠簸,恢复滑行
// 可以加一个小的超时计数器,这里为了简单先直接恢复
tracker->state = NO_CONSTANT_SPEED;
}
return; // 无论是否切换,都结束本次判断
}
#endif
// --- 静止判断 ---
if (acc_variance < STOP_ACC_VARIANCE_THRESHOLD && gyr_variance < STOP_GYR_VARIANCE_THRESHOLD && gyr_magnitude < STOP_GYR_MAG_THRESHOLD) {
tracker->state = STATIC;
return;
}
// --- 地面状态切换逻辑 ---
switch (tracker->state) {
case LANDING:
tracker->state = STATIC;
break;
case STATIC:
// 优先判断是否进入 WOBBLE 状态
// 条件:陀螺仪活动剧烈,但整体加速度变化不大(说明是原地转或晃)
if (gyr_magnitude > ROTATION_GYR_MAG_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) < WOBBLE_ACC_MAG_THRESHOLD) {
tracker->state = WOBBLE;
}
// 只有在陀螺仪和加速度都满足“前进”特征时,才启动
else if (gyr_variance > START_GYR_VARIANCE_THRESHOLD && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
break;
case WOBBLE:
// 从 WOBBLE 状态启动的条件应该和从 STATIC 启动一样严格
if (gyr_variance < START_GYR_VARIANCE_THRESHOLD * 2 && fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
// 如果陀螺仪活动减弱,则可能恢复静止
else if (gyr_magnitude < ROTATION_GYR_MAG_THRESHOLD * 0.8f) { // 增加迟滞,避免抖动
// 不直接跳回STATIC而是依赖下一轮的全局静止判断
}
break;
case NO_CONSTANT_SPEED: //非匀速状态
//暂时不考虑摔倒
// if (gyr_magnitude > FALLEN_GRY_MAG_THRESHOLD) {
// tracker->state = FALLEN; //摔倒
// } else
if (gyr_magnitude > WHEEL_GYR_MAG_THRESHOLD && acc_variance > WHEEL_ACC_VARIANCE_THRESHOLD) {
tracker->state = WHEEL; //转弯
} else if (fabsf(acc_magnitude - G_ACCELERATION) < SKIING_ACC_MAG_THRESHOLD) {
tracker->state = CONSTANT_SPEED; //匀速
}
break;
case CONSTANT_SPEED: //匀速状态
if (fabsf(acc_magnitude - G_ACCELERATION) > START_ACC_MAG_THRESHOLD) {
tracker->state = NO_CONSTANT_SPEED;
}
//TODO可以添加进入转弯或摔倒的判断
break;
case WHEEL:
// 从转弯状态,检查转弯是否结束
// 如果角速度和加速度方差都降下来了,就回到普通滑行状态
if (gyr_magnitude < WHEEL_GYR_MAG_THRESHOLD * 0.8f && acc_variance < WHEEL_ACC_VARIANCE_THRESHOLD * 0.8f) { // 乘以一个滞后系数避免抖动
tracker->state = NO_CONSTANT_SPEED;
}
break;
case FALLEN:
// TODO回到 STATIC
break;
}
}
/**
* @brief 主更新函数
*
* @param tracker
* @param acc_g 三轴加速度g
* @param gyr_dps 三轴陀螺仪dps
* @param angle 欧若拉角
* @param dt 采样时间间隔,会用来积分求速度
*/
void skiing_tracker_update(skiing_tracker_t *tracker, float *acc_g, float *gyr_dps, float *angle, float dt)
{
if (!tracker || !acc_g || !gyr_dps || !angle || dt <= 0) {
return;
}
if(my_skiing_tracker.state == STOP_DETECTION)
return;
// --- 数据预处理和缓冲 ---
float acc_device_ms2[3];
acc_device_ms2[0] = acc_g[0] * G_ACCELERATION;
acc_device_ms2[1] = acc_g[1] * G_ACCELERATION;
acc_device_ms2[2] = acc_g[2] * G_ACCELERATION;
// 将最新数据存入缓冲区
memcpy(tracker->acc_buffer[tracker->buffer_index], acc_device_ms2, sizeof(acc_device_ms2));
memcpy(tracker->gyr_buffer[tracker->buffer_index], gyr_dps, 3 * sizeof(float));
tracker->buffer_index++;
if (tracker->buffer_index >= VARIANCE_BUFFER_SIZE) {
tracker->buffer_index = 0;
tracker->buffer_filled = 1; // 标记缓冲区已满
}
// --- 更新状态机 ---
update_state_machine(tracker, acc_device_ms2, gyr_dps);
// --- 根据状态执行不同的计算逻辑 ---
switch (tracker->state) {
case TAKING_OFF:
tracker->speed = 0.0f;
break;
case IN_AIR:
// 在空中时,只累加滞空时间
tracker->time_in_air += dt;
break;
case LANDING:
// 刚落地,计算空中距离
calculate_air_distance(tracker);
// 清理速度和滤波器状态,为恢复地面追踪做准备
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
break;
case WHEEL:
case NO_CONSTANT_SPEED:
float linear_acc_device[3];
float linear_acc_world[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, linear_acc_world);
// 将最终用于积分的加速度存入 tracker 结构体
memcpy(tracker->acc_no_g, linear_acc_world, sizeof(linear_acc_world));
float acc_world_temp[3]; // 临时变量存储当前周期的加速度
for (int i = 0; i < 2; i++) { // 只处理水平方向的 x 和 y 轴
// --- 核心修改:颠倒滤波器顺序为 HPF -> LPF ---
// 1. 高通滤波 (HPF) 先行: 消除因姿态误差导致的重力泄漏(直流偏置)
// HPF的瞬态响应会产生尖峰这是正常的。
tracker->acc_world_filtered[i] = HPF_ALPHA * (tracker->acc_world_filtered[i] + tracker->acc_no_g[i] - tracker->acc_world_unfiltered_prev[i]);
tracker->acc_world_unfiltered_prev[i] = tracker->acc_no_g[i];
// 2. 低通滤波 (LPF) 殿后: 平滑掉HPF产生的尖峰和传感器自身的高频振动噪声。
// 这里使用 tracker->acc_world_filtered[i] 作为LPF的输入。
tracker->acc_world_lpf[i] = (1.0f - LPF_ALPHA) * tracker->acc_world_filtered[i] + LPF_ALPHA * tracker->acc_world_lpf[i];
// 将最终处理完的加速度值存入临时变量
acc_world_temp[i] = tracker->acc_world_lpf[i];
}
// 计算处理后加速度的水平模长
float acc_horizontal_mag = sqrtf(acc_world_temp[0] * acc_world_temp[0] +
acc_world_temp[1] * acc_world_temp[1]);
#if XTELL_TEST
debug2.acc_magnitude = acc_horizontal_mag;
#endif
// 应用死区,并积分
if (acc_horizontal_mag > ACC_DEAD_ZONE_THRESHOLD) {
tracker->velocity[0] += acc_world_temp[0] * dt;
tracker->velocity[1] += acc_world_temp[1] * dt;
}
// 更新速度和距离
tracker->speed = sqrtf(tracker->velocity[0] * tracker->velocity[0] +
tracker->velocity[1] * tracker->velocity[1]);
tracker->distance += tracker->speed * dt;
break;
case CONSTANT_SPEED:
//保持上次的速度不变。只更新距离
tracker->distance += tracker->speed * dt;
break;
case STATIC:
case WOBBLE:
// 速度清零,抑制漂移
memset(tracker->velocity, 0, sizeof(tracker->velocity));
tracker->speed = 0.0f;
memset(tracker->acc_world_unfiltered_prev, 0, sizeof(tracker->acc_world_unfiltered_prev));
memset(tracker->acc_world_filtered, 0, sizeof(tracker->acc_world_filtered));
memset(tracker->acc_world_lpf, 0, sizeof(tracker->acc_world_lpf)); // 清理新增的LPF状态
#if XTELL_TEST
debug2.acc_magnitude = 0;
#endif
break;
case FALLEN:
// TODO
break;
default:
break;
}
#if 1
float linear_acc_device[3];
float linear_acc_world[3];
float tmp_world_acc[3];
// 在设备坐标系下,移除重力,得到线性加速度
q_remove_gravity_with_quaternion(acc_device_ms2, quaternion_data, linear_acc_device);
// 将设备坐标系下的线性加速度,旋转到世界坐标系
q_transform_to_world_with_quaternion(linear_acc_device, quaternion_data, tmp_world_acc);
float all_world_mag = sqrtf(tmp_world_acc[0] * tmp_world_acc[0] +
tmp_world_acc[1] * tmp_world_acc[1] +
tmp_world_acc[2] * tmp_world_acc[2]);
static int count = 0;
if(count > 100){
xlog("===original(g): x %.2f, y %.2f, z %.2f===\n",acc_g[0],acc_g[1],acc_g[2]);
xlog("===world(m/s^2) no g: x %.2f, y %.2f, z %.2f, all %.2f===\n",tmp_world_acc[0],tmp_world_acc[1],tmp_world_acc[2],all_world_mag); //去掉重力加速度
xlog("===gyr(dps) : x %.2f, y %.2f, z %.2f===\n",gyr_dps[0],gyr_dps[1],gyr_dps[2]); //angle
xlog("===angle : x %.2f, y %.2f, z %.2f,===\n",angle[0],angle[1],angle[2]);
xlog("===speed(cm/s): %d\n",(int)(tracker->speed*100) );
count = 0;
}
count++;
#endif
}
/**
* @brief 滑雪数据计算
*
* @param acc_data_buf 传入的三轴加速度数据
* @param gyr_data_buf 传入的三轴陀螺仪数据
* @param angle_data 传入的欧若拉角数据
* @return 速度cm/s
*/
uint16_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion) {
static int initialized = 0;
static float acc_data_g[3];
static float gyr_data_dps[3];
if(quaternion != NULL){
memcpy(quaternion_data, quaternion, 4 * sizeof(float));
}
// const float delta_time = DELTA_TIME+0.01f;
// const float delta_time = DELTA_TIME + 0.005f;
const float delta_time = DELTA_TIME;
if (!initialized) {
skiing_tracker_init(&my_skiing_tracker);
initialized = 1;
printf("Skiing Tracker Initialized. Waiting for sensor calibration...\n");
}
#if ACC_RANGE==2
// 加速度 LSB to g
acc_data_g[0] = (float)acc_data_buf[0] / 16384.0f;
acc_data_g[1] = (float)acc_data_buf[1] / 16384.0f;
acc_data_g[2] = (float)acc_data_buf[2] / 16384.0f;
#endif
#if ACC_RANGE==4
// 加速度 LSB to g
acc_data_g[0] = (float)acc_data_buf[0] / 8192.0f;
acc_data_g[1] = (float)acc_data_buf[1] / 8192.0f;
acc_data_g[2] = (float)acc_data_buf[2] / 8192.0f;
#endif
#if ACC_RANGE==8
//±8g 4096
acc_data_g[0] = (float)acc_data_buf[0] / 4096.0f; //ax
acc_data_g[1] = (float)acc_data_buf[1] / 4096.0f; //ay
acc_data_g[2] = (float)acc_data_buf[2] / 4096.0f; //az
#endif
#if ACC_RANGE==16
//±16g 2048
acc_data_g[0] = (float)acc_data_buf[0] / 2048.0f; //ax
acc_data_g[1] = (float)acc_data_buf[1] / 2048.0f; //ay
acc_data_g[2] = (float)acc_data_buf[2] / 2048.0f; //az
#endif
// 陀螺仪 LSB to dps (度/秒)
// ±2000dps量程下转换系数约为 0.061
gyr_data_dps[0] = (float)gyr_data_buf[0] * 0.061f;
gyr_data_dps[1] = (float)gyr_data_buf[1] * 0.061f;
gyr_data_dps[2] = (float)gyr_data_buf[2] * 0.061f;
skiing_tracker_update(&my_skiing_tracker, acc_data_g, gyr_data_dps, angle_data, delta_time);
return (uint16_t)(my_skiing_tracker.speed * 100);
}

View File

@ -0,0 +1,83 @@
#ifndef SKIING_TRACKER_H
#define SKIING_TRACKER_H
#include "../xtell.h"
#include <math.h>
#include <string.h>
// 定义滑雪者可能的状态
typedef enum {
STATIC, // 静止或动态稳定0
NO_CONSTANT_SPEED, // 正在滑雪非匀速1
CONSTANT_SPEED, // 正在滑雪匀速2
WOBBLE, // 正在原地旋转3
WHEEL, // 转弯4
FALLEN, // 已摔倒5
TAKING_OFF, // 起跳冲击阶段6
IN_AIR, // 空中失重阶段7
LANDING, // 落地冲击阶段8
STOP_DETECTION, // 停止检测9
UNKNOWN // 未知状态10
} skiing_state_t;
#define VARIANCE_BUFFER_SIZE 5 // 用于计算方差的数据窗口大小 (5个样本 @ 100Hz = 50ms),减小延迟,提高实时性
#define DELTA_TIME 0.01f
// 追踪器数据结构体
typedef struct {
// 公开数据
float velocity[3]; // 当前速度 (x, y, z),单位: m/s
float distance; // 总滑行距离,单位: m
float speed; // 当前速率 (标量),单位: m/s
skiing_state_t state; // 当前滑雪状态
// 内部计算使用的私有成员
float acc_no_g[3]; // 去掉重力分量后的加速度
// 用于空中距离计算
float time_in_air; // 滞空时间计时器
float initial_velocity_on_takeoff[3]; // 起跳瞬间的速度向量
int airborne_entry_counter; // 进入空中状态的确认计数器
int grounded_entry_counter; // 落地确认计数器
// --- 内部计算使用的私有成员 ---
// 用于动态零速更新和旋转检测的缓冲区
float acc_buffer[VARIANCE_BUFFER_SIZE][3]; // 加速度数据窗口
float gyr_buffer[VARIANCE_BUFFER_SIZE][3]; // 角速度数据窗口
int buffer_index; // 缓冲区当前索引
int buffer_filled; // 缓冲区是否已填满的标志
// 用于高通滤波器(巴特沃斯一阶滤波器)的私有成员,以消除加速度的直流偏置
float acc_world_filtered[3]; //过滤过的
float acc_world_unfiltered_prev[3]; //上一次没过滤的
float acc_world_lpf[3]; // 经过低通滤波后的世界坐标系加速度
} skiing_tracker_t;
typedef struct{
int acc_KS[3]; //卡尔曼后LSB转换后的 三轴加速度数据cm/s^2
int gyr_KS_dps[3]; //卡尔曼后LSB to dps 三轴陀螺仪数据
int angle_KS[3]; //卡尔曼后,计算得到的欧若拉角数据
}BLE_KS_send_data_t;
#ifdef XTELL_TEST
typedef struct{
float acc_variance; //三轴加速度方差之和
float gyr_variance; //三轴陀螺仪方差之和
float acc_magnitude; //三轴加速度模长
float gyr_magnitude; //三轴陀螺仪模长
}debug_t;
#endif
/**
* @brief 初始化滑雪追踪器
*
* @param tracker 指向 skiing_tracker_t 结构体的指针
*/
void skiing_tracker_init(skiing_tracker_t *tracker);
uint16_t sensor_processing_task(signed short* acc_data_buf, signed short* gyr_data_buf, float* angle_data, float* quaternion);
#endif // SKIING_TRACKER_H